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 Digital platform ecosystems thrive on their ability to acquire and leverage user data across multiple data-

driven services. This enables dominant platforms to harness insights obtained from their primary markets, 

where user data is collected, thus gaining a competitive advantage in secondary markets, where they 

exploit this data. While data cross-use brings about efficiencies, policymakers worldwide have expressed 

concerns about the economic power and the potential distortion of competition and innovation incentives 

associated with it. To address these concerns, two distinct and targeted policy interventions have been 

suggested: data siloing, which restricts the cross-use of data within platform ecosystems, and mandated 

data sharing with competitors. Using an analytical model that examines data cross-use in digital platform 

ecosystems, we analyzed the impact of data siloing and data sharing obligations, and their interaction on 

competition, innovation, consumer welfare, and overall social welfare. Our findings indicate that an 

optimal policy involves data sharing without data siloing, whereas the EU’s Digital Markets Act currently 

mandates both types of data cross-use regulation. 
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Introduction 

Digital platforms, characterized by their network effects, data-

driven operations, and ability to match supply and demand at 

an unprecedented scale, have attained unparalleled dominance 

in online markets. Whether focusing on search, social media, 

or e-commerce, a few dominant platforms have achieved an 

extraordinary level of market concentration, posing 

significant challenges to traditional businesses and raising 

concerns among policymakers worldwide. The pervasive 

influence of a few digital platforms has allowed them to create 

expansive ecosystems spanning multiple interconnected 

 
1 Siva Viswanathan was the accepting senior editor for this paper. Hanna Halaburda served as the associate editor. The authors are listed alphabetically and 
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markets. The creation of these ecosystems is often fueled by 

the cross-use of data: As consumers use the service of a 

dominant platform, they inevitably create a data footprint 

(e.g., location data, search and click data) that platforms can 

use to gain valuable insights for other services as well, 

enabling them to enhance their offerings and maintain a 

competitive edge. Thus, as dominant platforms expand their 

influence, they can capitalize on the wealth of data 

originating from their already established, dominated 

primary markets, allowing them to exert market power also 

in not yet dominated (secondary) markets. 
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Given the expanding digital platform ecosystems and the 
increasing use of data across platforms, policymakers are 
faced with the challenge of striking a delicate balance between 

fostering innovation and competition in digital markets. Data 
cross-use presents both opportunities and challenges for 
competition and innovation. On the one hand, it can drive 
innovation by enabling incumbent platforms to gain 
efficiencies that ultimately benefit users. On the other hand, 
data-driven competitive advantages in one market can be 

exploited in other markets, restricting the ability of rival 
platforms to compete and hindering their innovation efforts. 
The lack of competition may also discourage incumbent 
platforms from innovating as vigorously as they would with 
stronger competition. This would negatively impact 
consumers. It is primarily this chilling effect on innovation that 

has prompted policymakers to introduce regulations aimed at 
leveling the playing field in emerging platform markets, 
ensuring platforms’ competitiveness even when connected to 
established platform markets that are already monopolized. 

In this paper, we investigate two policy interventions specifically 
targeted at regulating data cross-use in digital platform 

ecosystems, data siloing and data sharing, and ask how these 
policy interventions impact innovation, competition, and welfare 
in digital platform ecosystems fueled by the cross-use of data. 
While data siloing puts restrictions on a dominant platform’s 
ability to cross-use data from one market in another market, data 
sharing requires a dominant platform to share cross-used data 

with rival firms. Both of these interventions are included in the 
Digital Markets Act (DMA), a law enacted in the European 
Union in November 2022, whose explicit goal is to improve 
contestability, innovation, and fairness in digital markets.2 

For example, Google’s ability to cross-use data and algorithmic 
insights from consumers’ search (e.g., on locations, local 

businesses, opening hours) through its dominant search engine 
(primary market) enabled it to enter the market for digital maps 
(secondary market) and offer a superior service (Prüfer & 
Schottmüller, 2021). Similarly, Google recently entered the 
health insurance market (Vengattil & Humer, 2020), where its 
ability to cross-use search data (as well as other relevant data, 

such as from maps) allows it to personalize its insurance 
contracts and improve risk models much better than standard 
insurance companies (Landy, 2020). In reverse, this also means 
that the lack of access to similar data troves leads to a distinct 
disadvantage, which can be a major impediment to rivals 
seeking to compete and innovate in platform markets (Zhu & 

Iansiti, 2012; Sun et al., 2024). In this context, strict data siloing 
would disallow Google to cross-use data from search in the 

 
2 Other jurisdictions, such as the U.K. and the U.S., have proposed similar 
pieces of regulation, but have not yet formally adopted them. The U.K. is in 

the process of establishing a Digital Markets Unit (DMU), which in the 

future could mandate data siloing or data sharing as a possible remedy for 
platforms with “strategic market status” (Furman et al., 2019; CMA, 2020). 

In the U.S., the American Innovation and Choice Online Act (H.R. 3816) 

insurance market, thereby leveling the playing field, whereas 
data sharing would seek to level the playing field by requiring 
Google to share cross-used data from its search business with 

other firms in the insurance market. 

Another recent example of platform ecosystem building 

through data cross-use is Apple’s strategy to capitalize on the 

vast data generated by its mobile devices and iOS platform 

(primary market) to extend its reach into the realm of mobile 

advertising (Loveless, 2022). By using new features such as app 

tracking transparency (enforced from iOS 14.5) to prevent other 

ad tech providers from accessing such user-level data in the 

name of privacy and through blocking trackers and cookies by 

default using Private Browsing (starting with macOS Sonoma), 

Apple has been able to gain access to superior data on consumer 

behavior from its iOS (primary market), which enables it to 

offer better-targeted advertising solutions on Apple devices 

than other ad tech providers. 

The DMA regulates how dominant platforms (called 

“gatekeepers” in the DMA) can leverage user data obtained 

through their regulated services (called “core platform 

services”) within their ecosystems. Search engines and 

operating systems—i.e., primary services, in the examples 

above—are such core platform services, and, among other 

firms, Google and Apple serve as gatekeepers under the DMA. 

Specifically, Article 5(2) of the DMA explicitly forbids 

gatekeepers to “cross-use personal data from the relevant core 

platform service in other services provided separately by the 

gatekeeper” unless users explicitly consent to this. This 

corresponds to data siloing. Although data siloing arguably 

levels the playing field in the secondary market, it comes at the 

cost of reducing the value generation (efficiencies) associated 

with data cross-use between markets (Krämer & Schnurr, 2022) 

and may thus limit innovation in digital markets. 

Further, Article 6(11) of the DMA demands that “the 

gatekeeper shall provide to any third-party undertaking 

providing online search engines ... access ... to ranking, query, 

click, and view data ... generated by end users on its online 

search engines.” This represents an example of mandated data 

sharing. Several scholars have cited mandated data sharing as a 

promising policy intervention (e.g., Argenton & Prüfer, 2012; 

Krämer & Schnurr, 2022; Prüfer & Schottmüller, 2021; Parker 

et al., 2021), as it immediately exploits the nonrivalry of data, 

which is the main economic property that makes data inputs 

distinct from physical inputs. However, mandated data sharing 

may also have a chilling effect on incumbents’ incentives to 

was enacted by the U.S. Congress in June 2021 and contains similar 
provisions. These regulations, like the DMA, are considered necessary to 

complement antitrust law, which has been found to be too slow and not 

suited to the context of digital markets (Abrahamson, 2014; Graef et al., 
2015; Gilbert, 2023). 
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innovate, as it leads to a loss of exclusivity over the data. At the 

same time, increased competition due to data sharing can spur 

innovation. Taken together, the effects of regulated data sharing 

on innovation are ex ante ambiguous.3 

Despite the practical relevance of data siloing and data sharing 

for the regulation of data-centric markets and online platforms, 

the impact of two approaches to innovation incentives in digital 

markets has not yet been studied in detail. Using a game-

theoretic approach, we account for the potential for various 

degrees to which data siloing or data sharing may or can be 

imposed in practice due to deliberate regulatory considerations 

or technical and legal limitations.4 Further, we consider the 

possibility of the two data policies interacting with each other: 

as more data is siloed, less can be shared. 

Our results suggest that data siloing and data sharing have 

mixed effects on innovation and welfare in platform ecosystems 

and have important implications for market participants and 

policymakers. Our findings show that both types of data cross-

use regulation decrease the innovation efforts of the incumbent, 

which also leads to lower demand, and hence less data 

availability in the primary market, which ultimately limits the 

source of value generation. In reverse, stricter data sharing 

regulation increases the data-induced efficiency and innovation 

efforts of rival platforms in the secondary market. Data siloing 

also has the ability to increase innovation efforts by rivals, but 

only if the level of data sharing is low. When the level of data 

sharing is high, stricter data siloing decreases the innovation 

efforts of the rival, leading to overall lower innovation and 

welfare in both markets. Therefore, no regulation (i.e., no 

siloing and no sharing) may yield better outcomes than some 

regulation— which would appear to level the playing field (e.g., 

strict siloing, but low level of data sharing) and may result from 

a political compromise or be guided by ease of implementation. 

Our results indicate that the most efficient market outcomes can 

be achieved with high degrees of data sharing but no data 

siloing. These results are robust across numerous model 

extensions. Our results have immediate application for the 

ensuing regulation of data-driven digital platform ecosystems, 

and we derive concrete policy proposals that can guide 

policymakers to derive data cross-use regulations that truly lead 

to more innovation and greater consumer welfare. 

 
3 In theory, antitrust law could be another route to mandate data sharing (if 

data is deemed an “essential facility”) or to require data siloing (e.g., as a 

remedy in a merger proceeding), but the legal burden for doing so is high, 
and there are only a few isolated examples of this in the past. For instance, 

Twitter was obliged to share data about tweets with PeopleBrowser (Graef 

et al., 2015), and the merger between Facebook and WhatsApp was cleared 
only under the condition of data siloing (European Commission, 2014). 
4 In practice, data siloing is easy to circumvent and difficult to monitor for 

regulators. For example, although strict data siloing served as a remedy for 
the merger between Facebook and WhatsApp, Facebook was later fined 

because it violated the remedy and combined user data from WhatsApp with 

Related Literature  

Our paper contributes to the nascent but growing literature 

on the regulation of digital platforms and data-related 

remedies that is situated at the intersection of information 

systems, economics, strategy and innovation research 

(Easley et al., 2018; Hagiu & Wright, 2023; Prüfer & 

Schottmüller, 2021; Parker et al., 2021; Tucker, 2019; 

Krämer & Schnurr, 2022; Cennamo et al., 2023) and relates 

to several streams of literature. 

First, data cross-use represents a form of demand-side 

economies of scope (Gawer, 2014; Henten & Windekilde, 

2022). Traditionally, economies of scope refer to supply-side 

synergies that arise from cost savings when producing 

multiple products (Teece, 1980; Panzar & Willig, 1981). In 

the context of platforms, Gawer (2014) extended the concept 

to economies of scope in innovation to denote cost savings 

from joint innovation. This concept is still driven by a 

supply-side logic and stems from the observation that 

manufacturing platforms used within supply chains are 

increasingly being shared across firms, ultimately leading to 

“innovation ecosystems” (Adner & Kapoor, 2010). 

Economies of scope in demand, on the other hand, arise from 

increased value to users when more products or services are 

added (Gawer, 2014; Henten & Windekilde, 2022). In the case 

of data cross-use, insights gained from the users of Service A 

are used to increase the value of Service B, representing a case 

of data-driven economies of scope in demand.  

Second, data cross-use has some commonalities with 

economies of scale (Stigler, 1958; Wilson, 1975) and 

organizational learning effects (Levitt & March, 1988) but is 

distinct from those concepts. Supply-side economies of scale 

occur because fixed costs of production or information 

acquisition lead to a decline in average unit costs within the 

same market as demand increases. Learning effects are similar 

to supply-side economies of scale, but unit costs fall along a 

learning curve over time (Cabral & Riordan, 1994; Argote, 

2013) rather than with demand. Demand-side economies of 

scale are network effects that affect users’ value within a 

(multisided) market (Katz & Shapiro, 1985; Parker & Van 

other services (European Commission, 2017). Furthermore, regulators may 

only demand data siloing by default but allow users to opt in to the 

combination of their data from the various services that they are using so 
that the data of those users can nevertheless be cross-used. This is also the 

case for Article 5(2) of the Digital Markets Act. Similarly, there are 

limitations to data sharing. It may not be technically feasible to share all 
data in real time, and privacy regulations limit the depth of user data that 

can be shared. Regulators can also restrict data sharing to certain types of 

data (e.g., search and query data), although other types of data would also 
be available to cross-use.  
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Alstyne, 2005).5 While economies of scale and learning 

effects are prevalent in digital services due to near-zero 

marginal costs and algorithmic improvements over time, this 

is not the focus of our study. Instead, we are interested in how 

the level of demand in one market affects demand and 

innovation in another market, even when the services or 

products provided are seemingly unrelated. Markets are 

linked by the value created by the cross-use of data. More 

demand in one market leads to more generation of user data 

(as consumers inevitably leave a digital footprint when using 

the service), which in turn can be cross-used to derive 

demand-enhancing insights in another market.  

An important feature of our analysis is that due to the nonrivalry 

of data, demand-side economies of scope from data cross-use 

can potentially be shared with rivals. In this respect, our analysis 

shares features with the literature on data portability and 

knowledge sharing between firms, but, as argued below, 

insights from those contexts are not readily transferable. 

Knowledge sharing within firm boundaries is a well-studied 

area (for a review, see, e.g., Small & Sage, 2006). However, 

the literature on knowledge sharing across firm boundaries is 

much less developed (Ritala et al., 2015). External knowledge 

sharing is often characterized by knowledge trading 

(Barachini, 2009), where firms exchange knowledge with 

each other. Firms generally do so only when they expect to 

benefit individually and can improve their own competitive 

position or innovation capabilities (Brusoni et al., 2001; Han 

et al., 2012; Gupta & Polonsky, 2014). In contrast, regulated 

data sharing, as studied here, is a one-way data exchange and 

does not require reciprocity. Indeed, in our setting, the 

dominant firm would not voluntarily share data with its rival, 

as it would undermine its own competitive position. Hence, 

data sharing occurs only because it is mandated by a regulator 

with the intention of improving the strategic position and 

innovation incentives of the rival firm with which data is 

shared, ideally without undermining the innovation incentives 

of the data provider. Knowledge sharing can also occur in a 

more uncontrolled manner, e.g., as suggested by innovation 

diffusion theory (Rogers, 1995), or through unintended 

information leakage (Baughn et al., 1997; Ritala et al., 2015), 

or through labor mobility and the socialization of workers 

(Menon, 2018). Our focus is different, as we study data 

sharing and data siloing as deliberate market interventions 

controlled and enforced by policymakers in order to maximize 

overall market efficiency and consumer welfare. 

 
5 There is some controversy in the literature regarding the relationship 

between indirect network effects and demand-side economies of scope. For 
example, Gawer (2014) considers demand-side economies of scope to be a 

type of indirect network effect because demand on market side A can affect 

Data portability is another policy intervention that policymakers 
have adopted to regulate data-rich platforms. However, data 
portability is different from data siloing and data sharing as 
conceptualized here. Data portability has been introduced as a 
result of privacy regulations and enables individual users to 
access personal data that they have provided to a data controller, 
e.g., an online platform. Data portability also allows users to 
instruct the data controller to transfer personal data directly to a 
third party. Such data portability provisions exist, for example, 
in the EU’s General Data Protection Regulation (GDPR) and 
the California Consumer Privacy Act (CCPA). Real-time data 
portability is also included in the Digital Markets Act (DMA) 
under Article 6(9), i.e., as a provision distinct from and in 
addition to the data sharing and data siloing provisions that we 
study here. Data portability differs from data sharing, as 
considered here because data sharing allows competitors to 
access data from a broad (representative) set of users and that 
data is not limited to personal data (e.g., a search engine may be 
obligated to share data on search results rather than just data 
provided by users). In contrast, data portability allows 
individual users to access and share only their own personal data 
(e.g., only the keywords entered into a search engine), on a per-
user request basis. The purpose of data portability is to make 
data-driven markets more competitive by facilitating the 
switching between providers in the presence of data-induced 
lock-in effects (Krämer, 2021). Consequently, the existing 
theoretical literature on data portability focuses on how data 
portability affects competition within a given market 
(Wohlfarth, 2019; Krämer & Stüdlein, 2019; Lam & Liu, 2020) 
but not on how portability affects innovation or competition 
across markets, which is the focus of our study.  

Our study is closely related to recent studies that consider 
mandatory data sharing as a means to promote competition and 
innovation in digital markets, especially in the context of search 
engines (Argenton & Prüfer, 2012; Prüfer & Schottmüller, 
2021; Schaefer & Sapi, 2023). Prüfer and Schottmüller (2021) 
considered the innovation incentives of competing search 
engines and found that data-driven network effects can lead to 
a situation of market dominance by one firm (i.e., the market 
has tipped), leading to a reduction in innovation incentives for 
all market participants. They argue that data sharing (within the 
same market) can restore a level playing field that restores 
innovation incentives. In our paper, we instead consider how 
both data sharing and data siloing, as well as the interaction 
between them, affect innovation incentives in the primary 
(tipped) market as well as in a secondary (untipped) market. The 
importance of data access for competition and innovation and 
the demand-enhancing effect of better data access are widely 
recognized in both the theoretical (Gawer, 2014; Krämer & 
Schnurr, 2022; Gregory et al., 2021; Henten & Windekilde, 
2022; Kwark et al., 2017; Lam & Liu, 2023) and empirical 

value or demand on market side B. However, we distinguish between these 

concepts because we argue that data cross-use creates demand-side 
economies of scope across two seemingly unrelated markets, and not just 

between market sides A nd B belonging to the same (multisided) market. 
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literature (Schaefer & Sapi, 2023; Klein et al., 2022; Sun et al., 
2024). For example, Schaefer and Sapi (2023) used real search 
engine query logs to empirically investigate the quality 
improvements from more fine-grained search data. To date, 
however, the discussion on data sharing has largely focused on 
competition and innovation in a single platform market, 
whereas the focus of our study is on the leveraging of data 
across markets. Moreover, the interplay between data sharing 
and data siloing has so far been ignored. 

Our paper more generally complements the literature on data-
driven network effects (Rubinfeld & Gal, 2017; Gregory et al., 
2021, 2022; Hagiu & Wright, 2023) that arise from a firm’s 
ability to engage in within-user and across-user learning from 
data. Gregory et al. (2021, 2022) highlighted the practical 
relevance and importance of such data-driven network effects 
for digital markets spurred by advances in artificial intelligence 
and theorized how the interaction between data availability and 
AI capabilities leads to enhanced value for users. Similarly, 
Haftor et al. (2021) considered both within-user and across-user 
data-driven network effects and showed how these can create 
consumer lock-in while generating value and efficiency. Hagiu 
and Wright (2023) considered data-enabled learning as a quality-
enhancing effect within a market and found that the degree of 
competition between rival firms depends largely on the 
availability of data and the shape of the learning curve. We 
consider both within-user learning and across-user learning but 
study their impact on competition and innovation across markets 
within a platform ecosystem. We contribute to the literature by 
showing that there is a tension between innovation (enhanced 
user value) and competition in the cross-market context. 

Finally, our study also relates to prior research on cross-market 
promotions and bundling in marketing research (Goić et al., 
2011; Prasad et al., 2015; Yan et al., 2022). For example, Goić 
et al. (2011) considered a setting in which consumers who 
purchase a good in a primary market receive price discounts that 
can be redeemed in a secondary market. Our paper shares with 
them the insight that cross-market leverage can increase 
efficiency for firms and consumers. However, we show that the 
mechanism through which this occurs is different, as we 
consider a cross-market network effect, where the demand-
enhancing effect depends not only on one’s own consumption 
in the primary market but foremost on how many other users 
have consumed the primary good. Furthermore, our study 
focuses on the impact of data-related policy interventions and 
their impact on innovation and competition, while prior 
literature has focused on the impact of cross-market promotions 
on the sales and profits of the focal firm.  

 
6 Our insights are robust to other ways of modeling competition, such as 
through Bertrand-type or Hotelling-type price competition. Details are 

available upon request. 
7 A microfoundation for this specific demand function is provided in 
Appendix B, but our insights apply more generally for downward-sloping 

inverse demand functions. 

Model 

Players and Environment  

We consider a game-theoretic model with two platforms 𝑖 ∈

{1,2} and two markets 𝑚 ∈ {𝐴, 𝐵}: (1) a primary (monopolized) 

market denoted by 𝑚 = 𝐴 and (2) a secondary (competitive) 

market denoted by 𝑚 = 𝐵. For expositional clarity, we assume 

a Cournot-type competition, whereby platforms strategically set 

optimal output or demand levels, 𝑞𝑖, along an inverse demand 

curve 𝑃(𝑄) with 𝑄 = ∑ 𝑞𝑖𝑖 .6 Hence, 𝑃(𝑄) represents the “price” 

that can be taken from consumers at a certain level of demand. 

Therefore, “price” should be understood broadly as a means by 

the platforms to extract consumer surplus. Indeed, our model 

insights are not restricted to a setting in which platforms 

demand an explicit price from consumers. Consumer surplus 

extraction can also occur in other ways such as through 

advertisements (which incur ad nuisance costs to consumers) or 

by creating and selling consumer profiles (which incur privacy 

costs to consumers). However, a higher “price” or degree of 

surplus extraction always corresponds to a lower demand (as 

consumers use the service less when it demands a higher price 

or shows more ads) so that inverse demand curves are 

downward sloping. Figure 1 visualizes these downward-sloping 

inverse demand curves. 

Consumer Demand and Platform Profit in the 
Primary, Monopolized Market A 

We consider the following parsimonious inverse demand 

function in Market 𝐴 in our main model: 𝑃𝐴(𝑞𝐴, 𝑣𝐴) = 1 + 𝑣𝐴 −

3𝑞𝐴, where 𝑣𝐴 signifies the innovation efforts that Platform 1 

exerts in Market 𝐴.7 While the precise functional form of the 

demand function is not material for our results, the main 

assumption here is that a higher innovation effort, 𝑣, shifts the 

demand curve upwards (e.g., as innovation leads to a better 

service quality such as better algorithms or more service 

features), leading to a higher demand at any given price, as 

visualized in Figure 1a. Let 𝐼(𝑣) be a platform’s service-

specific cost of innovation for exerting effort level 𝑣. We 

assume a standard convex cost function, given by 𝐼(𝑣) = 𝑣2/2, 

which means that it becomes increasingly more costly to 

innovate to increase service quality—i.e., 𝐼′(𝑣) > 0 and 

𝐼′′(𝑣) > 0.8 Thus, Platform 1’s profit in Market 𝐴 is given by 

𝛱𝐴 = 𝑃𝐴𝑞𝐴 − 𝐼(𝑣𝐴).
9

8 Our insights do not depend on this specific functional form of the 
investment function. 
9 After defining a function, we suppress the arguments of the function for 

easier reading. We again employ the arguments of the functions when 
needed for clarity. 
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(a) Primary (monopolized) Market A 

 

(b) Secondary (competitive) Market B 

Figure 1. Visualization of the Model Mechanism Through Which Innovation Efforts and Data Cross-Use 
Affect Market 

 

Table 1. Table of Notations 

Variable Interpretation 

𝛹𝑖 Demand-enhancing effect of data cross-use in Market 𝐵 for platform 𝑖 ∈ {1,2}. 

𝜌 The level of mandated data siloing, 𝜌 ∈ [0,1]. 

𝛿 The level of mandated data sharing, 𝛿 ∈ [0,1]. 

𝜃 Degree to which user data from Market 𝐴 can be cross-used in 𝐵. 

𝑃𝐴 Inverse demand function of Platform 1 in Market 𝐴. 

𝑃𝑖 Inverse demand function of platform 𝑖 ∈ {1,2} in Market 𝐵. 

𝐼(𝑣) Investment cost for innovation effort level 𝑣. 

𝛱𝑖 Profit of platform 𝑖 ∈ {1,2}. 

𝐶𝑆𝑚 Consumer Surplus in market 𝑚 ∈ {𝐴, 𝐵}. 

Decision variables: 

𝑞𝐴 Consumer demand in Market 𝐴. 

𝑞𝑖 Consumer demand of platform 𝑖 in Market 𝐵. 

𝑣𝐴 Innovation effort by Platform 1 in Market 𝐴. 

𝑣𝑖 Innovation effort by platform 𝑖 in Market 𝐵 for 𝑖 ∈ {1,2}. 
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Data Cross-Use, Consumer Demand, and 
Platform Profit in Secondary, Competitive 
Market B  

Our main interest lies in considering the implications of data 

cross-use between the primary Market 𝐴 and the secondary 

Market 𝐵 on platforms’ innovation efforts and on (consumer) 

welfare, and how such data cross-use should be regulated in 

order to maximize (consumer) welfare. Specifically, we 

assume that Platform 1 can leverage its consumer data 

obtained in Market 𝐴 to enhance consumer demand in Market 

𝐵, which provides it with a competitive advantage. 

Data Cross-Use Regulation  

Data cross-use by Platform 1 in Market 𝐵 could be regulated in 

two ways to derive a more level playing field for competition 

and innovation in Market 𝐵: 

Data siloing: This refers to a policy whereby the data-rich 

incumbent is prohibited from exploiting (consumer) data 

gathered in its primary (monopolized) market to enhance its 

operations in a secondary (competitive) market. This implies 

that different business entities of the regulated platform 

providing services in different markets are proscribed from 

cross-using data or insights derived thereof in their respective 

services. We denote the degree of data siloing by 𝜌 ∈ [0,1] 

where 𝜌 = 0 represents no limitations on data cross-use, and 

𝜌 = 1 corresponds to a strict data siloing regime where no data 

can be cross-used. 

Data sharing: This policy allows the regulated platform to 

cross-use the data acquired in the primary market in the 

secondary market as well but requires the platform to share this 

data with rivals. We denote the degree of data sharing by 𝛿 ∈

[0,1], where 𝛿 = 0 represents no obligation for data sharing and 

𝛿 = 1 corresponds to a strict data sharing regime where all data 

available to Platform 1 in Market 𝐵 must also be shared with its 

rival in Market 𝐵. 

No Regulation  

We denote a certain data cross-use regulation by (𝜌,  𝛿). This 

includes the case where 𝜌 = 𝛿 = 0, which represents a lenient 

policy where platforms are not regulated. That is, Platform 1 

can make use of all of its data from Market 𝐴 in Market 𝐵 (no 

 
10 In Appendix D, we show that our insights are robust to the case where 
Platform 1 can identify consumers and can offer a cross-market benefit to 

those consumers who buy from it in both markets (within-user learning). 

data siloing) and does not have to share data with the rival 

platform (no data sharing). 

Data Generation and Impact of Cross-Use on 
Demand  

Consumers typically leave a data footprint when using a 

digital service. For example, by using a search engine, 

consumers generate query and click data that reveals what 

they are searching for. Likewise, users of a navigation 

software inevitably reveal data about their destination and 

geolocation. Thus, the generation of user data and the usage 

of a service are often inevitably intertwined. Consequently, 

the more consumers use the service in Market 𝐴, the more 

that user data is generated in Market 𝐴. We therefore proxy 

the consumer data generated in Market 𝐴 by the demand in 

Market 𝐴, i.e., 𝑞𝐴. Further, in the main model, we assume 

that the data generated in Market 𝐴 is useful to gather 

insights on consumers more generally in Market 𝐵, even if 

an individual consumer is not directly identifiable in Market 

𝐵 and irrespective of whether that consumer also buys from 

Platform 1 in Market 𝐵 (cross-user learning). For example, 

search and query data from search (Market 𝐴) can be useful 

to identify the health status of a certain region or a certain 

user population, which would be important information for 

a health insurance service in Market 𝐵. Similarly, data from 

a navigation software collecting insights on individual routes 

and traffic (Market 𝐴) could be useful for determining the 

placement of charging stations for electric vehicles (Market 

𝐵).10 We parameterize the degree to which data from Market 

𝐴 is relevant for cross-use in Market 𝐵 by 𝜃 ∈ (0,1). At 𝜃 = 0 

there is no value for cross-use (e.g., because the services 

provided are very different and no inferences can be made 

from Market 𝐴 to increase demand in Market 𝐵), whereas at 

𝜃 = 1 the data generated in Market 𝐴 is also highly useful for 

enhancing demand in Market 𝐵. We model the demand-

enhancing potential of data from Market 𝐴 through cross-use 

in Market 𝐵 by means of Platform 1’s and 2’s inverse 

demand functions in Market 𝐵 in the following way:11 

𝑃1(𝑣1, 𝛹1, 𝑞1, 𝑞2) = 1 + 𝑣1 +𝛹1 − 3(𝑞1 + 𝑞2) and 

𝑃2(𝑣2, 𝛹2, 𝑞1, 𝑞2) = 1 + 𝑣2 +𝛹2 − 3(𝑞1 + 𝑞2). Notice that we 

use the same parsimonious inverse demand function as in 

Market 𝐴, but with two notable differences. First, as we 

consider a Cournot-type competition model, platform 𝑖’s 

inverse demand depends not only on its own strategic 

demand level, 𝑞𝑖, but also on that of the rival platform, since 

the two platforms are in competition. Second, and most 

importantly for our analysis, platform 𝑖 can shift its inverse 

demand curve upwards not only by exerting innovation 

11 A microfoundation for these demand expressions can be found in 
Appendix B. 
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efforts (𝑣𝑖), but also by leveraging data cross-use. We denote 

the magnitude of this data cross-use effect on demand by 𝛹𝑖 

and note that it is platform specific and depends on the 

degree to which data from Market 𝐴 can be repurposed in 

Market 𝐵 (parameterized by 𝜃) and on the regulatory policy 

regime with a given data sharing (𝛿) and data siloing (𝜌) 

level. Next, we describe the properties of 𝛹𝑖 in more detail. 

Under a policy regime (𝜌,  𝛿) imposed on Platform 1, which 

has immediate access to the data generated in Market 𝐴, 

𝛹1(𝜌, 𝜃𝑞𝐴) is a function of the level of cross-use-relevant data 

generated in Market 𝐴, and the degree of data siloing, 𝜌. For 

Platform 2, which does not have immediate access to data 

generated in Market 𝐴, 𝛹2(𝛿, 𝜌, 𝜃𝑞𝐴) additionally depends on 

the degree of data sharing, 𝛿. Due to the intermarket linkage 

via data cross-use, consumers have to anticipate the value 

generated from demand in Market 𝐴 when considering 

which service to use in Market 𝐵. In any equilibrium, this 

anticipated value must be correct.12 

In favor of clarity, the main results of our paper are shown 

with a specific functional form for 𝛹𝑖 with 𝛹1(𝜌, 𝜃𝑞𝐴) =
(1 − 𝜌)𝜃𝑞𝐴 and 𝛹2(𝛿, 𝜌, 𝜃𝑞𝐴) = 𝛿𝛹1(𝜌, 𝜃𝑞𝐴). In Appendix F 

we demonstrate that our insights are robust for more general 

functional forms for 𝛹𝑖. Importantly, as the amount of data 

siloing (𝜌) increases, both 𝛹1 and 𝛹2 fall, because data siloing 

limits the amount of data that can be cross-used from Market 

𝐴 in Market 𝐵. Furthermore, more regulated data siloing also 

implies that Platform 1 has less data available for sharing, as 

it can only share data (originating from Market 𝐴) with 

Platform 2 in Market 𝐵 if it has access to this data itself in 

Market 𝐵. As a consequence, data siloing and data sharing 

interact. This is captured by the multiplicative form (1 − 𝜌)𝜃 

embodied in 𝛹𝑖. At the limit 𝜌 = 1, no data can be cross-used 

and 𝛹1 = 𝛹2 = 0, yielding the same inverse demand functions 

in Market 𝐵 for the two platforms, and thus leveling the 

playing field for competition and innovation. Instead, when 

𝜌 < 1 and the level of mandated data sharing (𝛿) increases, 

only the inverse demand of Platform 2 increases while the 

inverse demand of Platform 1 stays the same. This implies that 

an increase in data sharing also levels the playing field in 

Market 𝐵. Thus, both data siloing and data sharing are 

different policy means to achieving the same end. But as we 

will show, they have vastly different implications on 

innovation and consumer welfare. 

Figure 1 visualizes how innovation efforts and data cross-

use affect demand and market outcomes. Innovation efforts 

by Platform 1 in the primary Market 𝐴 lead to an increased 

 
12 As is typical for models with value derived from a network, we assume 

that the value generated from the network is correctly anticipated in 

equilibrium. In order to ease notation, we do not differentiate between the 
actual and anticipated value associated with the network. In the proofs 

(Appendix A), the model is solved in detail while retaining this distinction. 

demand in that market, which makes more data available for 

cross-use and thus also yields a demand-enhancing effect via 

𝛹1 in the secondary Market 𝐵. The magnitude of that effect 

is moderated by the policy regime (𝜌, 𝛿) and the potential for 

data cross-use (𝜃). In case data has to be shared with the rival 

Platform 2, innovation by Platform 1 in Market 𝐴 also 

benefits Platform 2 in Market 𝐵 via 𝛹2. In addition, each 

platform can enhance its demand further through innovation 

efforts in Market 𝐵. But as we will show later, innovation 

incentives in markets 𝐴 and 𝐵 are also influenced by the 

policy regime (𝜌, 𝛿) through the intermarket linkages via 

data cross-use, and competition in Market 𝐵. 

Platform profits: Platform profits are the sum of revenues 

in each market that the platform operates in, minus the 

service-specific innovation costs: 

max
𝑣𝐴,𝑣1,𝑞𝐴,𝑞1

𝛱1 ≜ 𝑃𝐴𝑞𝐴 − 𝐼(𝑣𝐴)⏟        
Profit in Market 𝐴

+ 𝑃1𝑞1 − 𝐼(𝑣1)⏟        
Profit in Market 𝐵

, and max 
𝑣2,𝑞2

𝛱2

≜ 𝑃2𝑞2 − 𝐼(𝑣2)⏟        
Profit in Market 𝐵

. 

Timing and equilibrium concept: In stage 𝑡 = 1, platforms 

choose their demand-enhancing innovation levels 𝑣𝐴, 𝑣1 and 

𝑣2.
13 In stage 𝑡 = 2 observing the innovation levels, 

consumers anticipate the demand in Market 𝐴 and the 

corresponding demand-enhancing effect of data cross-use in 

Market 𝐵.14 In stage 𝑡 = 3, Platform 1 and Platform 2 

simultaneously determine their demand level 𝑞𝐴, 𝑞1 and 𝑞2, 

respectively. We employ the subgame perfect equilibrium 

concept. Table 1 summarizes our notation. 

The Impact of Data Siloing and Data Sharing 
on Market Outcomes and Innovation 

We solve the game by backwards induction and relegate the 

proofs to Appendix A. In the following, we highlight the main 

strategic trade-offs that emerge from the equilibrium analysis. 

Demand-Setting Stage  

First, we establish the intermarket demand linkage and then 

discuss how it depends on the policy regime, given innovation 

effort levels. 

13 Innovation effort is chosen before demands because the investment in 

innovation is a longer term decision than demand and prices. 
14 In Appendix C, we show that our results hold when consumers can 

observe the demand in Market 𝐴. 
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Lemma 1 (Impact of data cross-use regulation on 

demand): (a) A higher degree of data cross-use (𝜃) or a 

higher innovation level in Market 𝐴 (𝑣𝐴) always increases 

Platform 1’s demand in Market 𝐵, but increases Platform 2’s 

demand in Market 𝐵 only when coupled with a sufficient level 

of data sharing (δ > 1/2). (b) More data siloing (larger 𝜌) 

leads to lower demand in Market 𝐵 for Platform 1 but reduces 

Platform 2’s demand in Market 𝐵 only when the level of data 

sharing is high (δ > 1/2). (c) More data sharing (larger 𝛿) 

leads to lower demand for Platform 1 in Market 𝐵 but a higher 

demand for Platform 2. (d) More data siloing reduces the total 

demand in Market 𝐵, whereas more data sharing increases 

the total demand in Market 𝐵. 

The lemma shows that demands in Market 𝐵 are impacted by 

innovation efforts in Market 𝐴 and the ability for data cross-use. 

With a higher innovation effort in Market 𝐴 (𝑣𝐴), which results in 

a larger demand (and hence also more data) in Market 𝐴, or a 

larger relevance of the data cross-use (𝜃), Platform 1 indeed 

obtains a larger demand in Market 𝐵. This is a direct consequence 

of the benefits of data cross-use from Market 𝐴 to Market 𝐵. 

In contrast, Platform 2 benefits from a higher 𝑣𝐴 only if a certain 

level of data sharing between Platform 1 and Platform 2 is 

imposed, i.e., 𝛿 > 1/2. Intuitively, this means that data sharing 

regulation must be sufficiently strict in order to benefit the rival 

Platform 2. A similar argument applies for the effect of an 

increase in 𝜃 on the demand of Platform 2. 

Moreover, notice that as the level of data sharing or data siloing 

increases, Platform 1 finds it profitable to reduce the demand it 

serves. This result follows directly from the fact that stricter 

regulation curbs Platform 1’s data advantage in Market 𝐵 and 

thus lowers its dominance as well. An increase in data siloing 

levels the playing field for Platform 2, and thus increases its 

demand, when at the same time data sharing is low. However, 

an increase in data siloing leads to lower demand of Platform 2 

when the data sharing regulation is sufficiently strict i.e., 𝛿 ≥

1/2. This is because in this regulatory constellation, Platform 2 

would benefit more from data sharing than from data siloing 

(which limits the amount of data that can be shared) in Market 

𝐵. Interestingly, the rise in consumer demand served by 

Platform 2 from increased data sharing is higher than the fall in 

consumer demand served by Platform 1. This suggests that 

consumers benefit from data sharing in Market 𝐵, given a fixed 

level of innovation effort in Market 𝐴. However, a key feature 

of our model is that the level of innovation in Market 𝐴 is not 

fixed, but chosen strategically by the regulated platform, and is 

therefore affected by regulation. 

Innovation-Setting Stage  

In Appendix A, we show that an increase in innovation in 

Market 𝐴 encourages Platform 1 to innovate more in Market 

𝐵 as well. In that sense, Platform 1’s innovation in Market 𝐴 

is a strategic complement to the innovation of Platform 1 in 

Market 𝐵. Instead, for Platform 2, an increase in innovation 

by Platform 1 in Market 𝐴 increases its innovation incentive 

only for sufficiently high levels of data sharing: 𝛿 > 9/14 

(see proof of Proposition 1). It is therefore of particular 

relevance to understand the innovation incentive of Platform 

1 in Market 𝐴. Differentiating the profit of Platform 1 with 

respect to 𝑣𝐴 yields the following first order condition, 

highlighting Platform 1’s incentives to invest in innovation 

in Market 𝐴: 

∂𝛱1
∂𝑣𝐴

=
∂𝑃𝐴
∂𝑣𝐴

𝑞𝐴
⏟  

direct effect in
primary market (+)

−
∂𝐼(𝑣𝐴)

∂𝑣𝐴⏟  
innovation 
cost effect (−)

+
 

(

 
 
 
 

∂𝑃1
∂Ψ1⏟
(+)

∂Ψ1
∂qA⏟
(+)⏟    

data cross-use effect
in secondary market

+
∂𝑃1
∂Ψ1⏟
(−)

∂Ψ1
∂qA⏟
(+)⏟    

data sharing 

effect )

 
 
 
 

∂𝑞A
∂𝑣𝐴

𝑞1
⏟  

total demand effect
in primary market (+)

⏟                                
Impact of data cross−use on innovation incentives in Market 𝐴 

= 0      (2) 

Innovation incentives in Market 𝐴 can be decomposed into 

multiple effects. The sign of the effect denotes whether the 

effect translates into a positive or a negative innovation 

incentive. First, there exists a (positive) direct effect and a 

(negative) innovation cost effect. These effects arise also in 

the absence of data cross-use and reveal that without data 

cross-use Platform 1 would face a classic monopolistic 

optimization problem in Market 𝐴. These expressions 

govern Platform 1’s innovation incentives that would arise 

if the two markets were not linked through data cross-use. 

However, the complex third term arises only when Platform 

1 has the ability for data cross-use in Market 𝐵 and reveals 

how Platform 1’s innovation incentives in Market 𝐴 can be 

positively or negatively affected through data cross-use and 

regulation. The first term in the parenthesis represents the 

(positive) data cross-use effect in the secondary market: It 

arises from the fact that a unit increase in innovation effort 

in Market 𝐴 increases the marginal revenue of Platform 1 in 

Market 𝐵. This is because increased innovation effort in 

Market 𝐴 enhances consumer value which increases demand 

in Market 𝐴, which leads to the generation of more data, 

which again enhances the demand of Platform 1 in Market 𝐵 

as well. This effect increases Platform 1’s incentive to 

innovate in Market 𝐴. Note that a stricter data siloing 

regulation (higher 𝜌) will dampen these innovation 

incentives and lower innovation in Market 𝐴. This is because 

as 𝜌 increases, the marginal gain in Market 𝐵 from data 

collection in Market 𝐴 falls—i.e., 
∂2𝛹1

∂𝑞𝐴 ∂𝜌
= −𝜃 < 0. 
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The second (negative) term in the parenthesis, denoted as 

data sharing effect, exists only with mandated data sharing, 

i.e., if 𝛿 > 0. This effect arises from the fact that as 

innovation in Market 𝐴 increases, under mandated data 

sharing, demand of the rival platform also increases, which 

lowers the marginal revenue of Platform 1 in Market 𝐵. This 

discourages Platform 1 from investing in Market 𝐴. Note that 

as data sharing levels increase (as 𝛿 increases), the data 

availability for Platform 2 increases, which increases the 

demand of Platform 2, i.e., 
∂2𝑞2(⋅)

∂𝑞𝐴 ∂𝛿
=
2𝜃(1−𝜌)

9
≥ 0. Thus, with 

more data sharing, the data sharing effect becomes stronger 

and dampens the incentive of Platform 1 to innovate in 

Market 𝐴 further. The sum of the two opposing effects 

determines whether Platform 1’s innovation level in Market 

𝐴 rises or falls vis-á-vis without data cross-use. 

Proposition 1 (Innovation): The innovation effort by 

Platform 1 in Markets 𝐴 and 𝐵 is reduced with stricter data 

sharing (larger 𝛿) or with stricter data siloing (larger 𝜌). The 

innovation effort of Platform 2 always increases with data 

sharing but increases with data siloing only if the level of data 

sharing is low (𝛿 < 9/14). 

From the above, it is immediate that without regulation (𝜌 =

0, 𝛿 = 0), the innovation effort reducing data sharing effect is 

absent and the data cross-use effect is at the highest level, 

implying that Platform 1’s innovation incentives in Market 𝐴 

are the highest in this case. 

Insight 1 (Impact on innovation in the primary market): 

The level of innovation in the regulated primary market is 

higher under a data sharing regime (𝜌 < 1, 𝛿 > 0) than under 

a strict data siloing regime (𝜌 = 1), but always the highest 

without regulation (𝜌 = 0, 𝛿 = 0). 

We now turn to the discussion of the impact of regulation on 

innovation incentives in the secondary market. With stricter 

data siloing or stricter data sharing obligations, innovation 

incentives by Platform 1 in Market 𝐵 are also reduced. This 

result is a combination of two reinforcing effects. First, an 

increase in data sharing or data siloing increases competition 

in Market 𝐵, which means that Platform 1’s benefits from a 

demand-enhancing innovation are lowered, as more of the 

increased profits from increased demand are dissipated away 

in the competitive process. In turn, this lowers the incentive to 

innovate by Platform 1 in Market 𝐵. Second, an increase in 

data sharing or data siloing also reduces the innovation levels 

in Market 𝐴, which further lowers data cross-use and, in 

consequence, the incentive to innovate in Market 𝐵. 

This reduced innovation incentive of Platform 1 affects 

Platform 2’s innovation levels in a more nuanced way. As data 

sharing increases, Platform 2 has an overall increased 

innovation incentive resulting from a positive direct and a 

negative indirect effect. The direct effect arises as follows. An 

increase in data sharing increases the data cross-use ability of 

Platform 2, which, ceteris paribus, enhances the innovation 

incentives of Platform 2. The indirect effect arises from 

reduced innovation incentives of Platform 1 in Markets 𝐴 and 

𝐵. While a reduction in innovation by Platform 1 in Market 𝐵 

positively impacts innovation incentive of Platform 2, a 

reduction in innovation efforts in Market 𝐴 may lower the 

incentive to innovate when data sharing levels are sufficiently 

high. However, in sum, the positive direct effect dominates 

and Platform 2 innovates more with data sharing. 

Interestingly, an increase in data siloing increases the 

innovation level of Platform 2 in Market 𝐵 only when the 

imposed level of data sharing is relatively low (𝛿 < 9/14). 

When the level of data sharing regulation is high, Platform 2 

significantly benefits from data collected in Market 𝐴. Recall 

that data siloing lowers the amount of data collected as well as 

the possibility to cross-use the collected data. This twofold 

reinforcing negative effect of data siloing on data generation 

and cross-use also reduces Platform 2’s innovation incentives. 

Insight 2 (Impact on innovation in the secondary market): 

For the regulated Platform 1, the level of innovation in the 

secondary market is higher under a data sharing regime (𝜌 <

1, 𝛿 > 0) than under a strict data siloing regime (𝜌 = 1). 

However, innovation by Platform 1 is always the highest 

without regulation (𝜌 = 0, 𝛿 = 0). 

Impact on Welfare  

We now consider the impact of data cross-use regulation on 

(1) consumer surplus, and (2) total welfare. The detailed 

formal analysis is relegated to Appendix A. 

Consumer Surplus  

Under Cournot-type competition, the consumer surplus can be 

derived as a function of demand and is given by 𝐶𝑆𝐴 =
3

2
(𝑞𝐴
⋆)2 

and 𝐶𝑆𝐵 =
3(𝑞1

⋆+𝑞2
⋆)2

2
 in Markets 𝐴 and 𝐵, respectively (see 

Appendix A). The star denotes the equilibrium values. Lemma 

1, which considers the impact of regulation on demand but 

holding innovation efforts constant, already hints at the 

nuanced effects of a data cross-use regulation on consumer 

surplus, since the demand of Platform 1 and Platform 2 can be 

affected in opposing ways. Furthermore, Proposition 1 asserts 

that the platform’s innovation efforts are also affected by the 

policy regime. 
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Proposition 2 (Consumer Surplus): A stricter data siloing 

regulation (larger 𝜌) decreases consumer surplus in Markets 

𝐴 and 𝐵. A stricter data sharing regulation (larger 𝛿), lowers 

consumer surplus in Market 𝐴, but increases consumer 

surplus in Market 𝐵. The total consumer surplus increases 

with more data sharing (a larger 𝛿). 

The intuition for this proposition is as follows. A stricter data 

siloing regime reduces innovation efforts in Market 𝐴 which 

also lowers consumer surplus in Market 𝐴. In Market 𝐵, stricter 

data siloing affects consumer welfare as follows. First, a direct 

consumer welfare loss from a decrease in the ability to cross-

use data in Market 𝐵 as well as the welfare loss from a decrease 

in innovation in Market 𝐴, which leads to lower demand and 

less data being generated in Market 𝐴 that can be cross-used in 

Market 𝐵. This negative effect on consumer surplus is further 

reinforced by a reduction in innovation efforts by Platform 1 in 

Market 𝐵. In contrast, Platform 2 increases its innovation with 

data siloing, but only when the mandated level of data sharing 

is low. Otherwise, the negative effect on consumer surplus is 

further reinforced by reduced innovation of Platform 2. The 

total effect of more data siloing on consumer surplus is 

unambiguously negative. Thus, a stricter data siloing regime 

may hurt consumers in both markets. 

The impact of an increase in data sharing on consumer 

surplus is likewise driven by several underlying effects: In 

Market 𝐴, an increase in data sharing lowers innovation 

efforts which reduces consumer surplus. In Market 𝐵, more 

data sharing has two opposing effects on consumer surplus. 

First, a direct positive effect arises from increased innovation 

by Platform 2. Next to increasing demand, this also makes 

Platform 2 a fiercer competitor in Market 𝐵. Second, data 

sharing negatively impacts consumer surplus through lower 

innovation efforts by Platform 1 in both Market 𝐴 and Market 

𝐵. In Market 𝐵, since the positive effect of increased 

competition and higher innovation effort by Platform 2 

dominates, data sharing increases consumer surplus in 

Market 𝐵. Whether more data sharing increases consumer 

surplus in the aggregate across Markets 𝐴 and 𝐵 depends on 

the strength of the underlying effects and the relative size of 

each market.15 The positive impact of data sharing on 

consumer surplus in Market 𝐵 can dominate the negative 

impact on Market 𝐴 if, at the same time, the level of data 

siloing is relatively low. This is visualized in Figure 2a, which 

compares the consumer surplus for all possible degrees of 

data sharing regulation (𝛿) and data siloing regulation (𝜌) 

relative to the benchmark of no regulation (𝜌 = 0, 𝛿 = 0), 

located in the southwest corner. This suggests that the 

consumer surplus loss in Market 𝐴 from reduced innovation 

may be outweighed by the consumer surplus gains in Market 

 
15 In Appendix E, we consider a model variant where the market size of 

Markets 𝐴 and 𝐵 differ. 

𝐵, rendering a data sharing regulation policy potentially 

beneficial only if coupled with a lenient data siloing regime. 

Total Welfare  

Next, we consider total consumer welfare, which is the sum of 

producers’ surplus (i.e., the platforms’ profits) and consumer 

surplus. 

Proposition 3 (Producers’ Surplus): Platform 1’s profit 

decreases with stricter data sharing (larger 𝛿) or stricter data 

siloing (larger 𝜌). Platform 2’s profit increases with stricter 

data sharing, but increases with stricter data siloing only if the 

level of data sharing is low (𝛿 < 9/14). 

Proposition 3 highlights that data cross-use regulation can 

indeed level the playing field and make the platforms’ profits 

more similar, as both data sharing as well as data siloing tend to 

have opposite effects on the profits of Platform 1 (the data 

provider) and Platform 2 (the data recipient). However, 

Proposition 3 also points again to a possible negative interaction 

of a data siloing regulation and a data sharing regulation. Based 

on these insights, we can now derive the impact of the two types 

of regulations on total welfare. 

Proposition 4 (Total Welfare): A stricter data siloing 

regulation (larger 𝜌) decreases total welfare, whereas a stricter 

data sharing regulation (larger 𝛿) increases total welfare. 

Proposition 4 highlights that, although both data siloing and 

data sharing have the possibility to level the playing field for 

competition in markets that are connected through data cross-

use, a stricter data siloing regime, which limits the extent of the 

data cross-use, is likely to be harmful overall as it reduces total 

welfare. In contrast, a stricter data sharing regime 

unambiguously increases total welfare, everything else being 

equal. Consequently, with regard to total welfare, data siloing 

regulation and data sharing regulation negatively interact with 

each other. Whether total welfare is increased or decreased by 

some data policy (𝜌 > 0, 𝛿 > 0) relative to the benchmark of no 

regulation (𝜌 = 0, 𝛿 = 0) depends on parameters. This is 

visualized by Figure 2b. 

Insight 3 (Impact on Welfare): In comparison to no 

regulation (𝜌 = 0, 𝛿 = 0), data sharing regulation (𝜌 < 1, 𝛿 >

0) increases consumer welfare or total welfare only if the level 

of data siloing is low (𝜌 < 𝜌𝐶𝑆 or 𝜌 < 𝜌𝑊). [See also Figure 2.] 

A strict data siloing regime (𝜌 = 1) always yields a lower 

(consumer) welfare than no regulation.
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(a) Consumer Surplus                                                                     (b) Total Welfare 

Note: Region R1: Higher CS with regulation, R2: Lower CS with regulation, R3: Lower CS with regulation (but higher CS in Market B). 
Figures derived for θ=1/10. 

Figure 2. The Impact of Various Degrees of a Data Siloing Regulation (ρ > 0) and a Data Sharing 
Regulation (δ > 0) in Comparison to No Regulation (ρ = δ = 0)  

Taken together, we can immediately derive that the optimal data 

cross-use regulation, which maximizes (consumer) welfare, 

does not involve any data siloing, but maximizes data sharing. 

Insight 4 (Optimal Data Cross-Use Regulation): Total 

welfare and consumer surplus are maximized when no data 

is siloed and data is fully shared with the rival Platform 2—

i.e., 𝜌 = 0 and 𝛿 = 1. 

Model Robustness and Extensions 

The propositions and insights on the impact of data cross-

use regulation on innovation and welfare have been derived 

for a parsimonious base model. As we show next, our 

insights are robust and continue to hold qualitatively for a 

range of model extensions. 

Alternative Timing  

The base model assumes that demand levels are chosen 

simultaneously in Markets 𝐴 and 𝐵. However, since Market 

𝐴 is considered the primary market, suppose strategic output 

choices are first made in the primary Market 𝐴, and then in 

the secondary Market 𝐵. In Appendix C, we show that our 

results are robust to this alternative timing. This is because 

the main strategic trade-offs—that is, the leveraging effect 

of data from Market 𝐴 into Market 𝐵 and its implications on 

the innovation strategy of Platform 1—remain unaffected by 

the timing of the game. Thus, we derive the qualitatively 

same results as in the base model. 

Personalized Data Cross-Use  

In the base model, data collected for some users in the primary 

Market 𝐴 was assumed to shift the demand curve for platform 𝑖 

for 𝑖 ∈ {1,2} in the secondary Market 𝐵, irrespective of whether 

the same users are also present in the secondary market. Thus, 

the data gathered in Market 𝐴 was assumed to bear some 

general insights about consumer preferences in Market 𝐵. Our 

assumption in the base model is therefore consistent with an 

across-user learning scenario (Hagiu & Wright, 2023). In 

Appendix D we consider a model variant, where the data 

collected by Platform 1 in Market 𝐴 on some consumer is 

valuable only for the platform in Market 𝐵 that serves the same 

consumer on which the data was gathered. This would 

correspond to a within-user learning scenario (Hagiu & Wright, 

2023). To model this, we considered a generalized Hotelling-

type competition framework (cf. Fudenberg & Tirole, 2000) in 

which consumers are heterogeneous along two dimensions: (1) 

their innate preference of the service of Platform 2 over the 

service of Platform 1 in Market 𝐵, denoted by 𝑋, with a high 𝑋 
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value denoting a strong preference for Platform 2’s service; (2) 

consumers’ privacy preferences, denoted by 𝑌. A high 𝑌 value 

indicates high privacy costs for revealing data when consuming 

service 𝐴. Along both dimensions consumers are independently 

and identically distributed (i.i.d.) according to a uniform 

distribution on the unit interval. A consumer of type (𝑋, 𝑌) 

benefits from data cross-use only if the consumer has used the 

service in Market 𝐴 and the consumer’s data is available to the 

platform that services the consumer in Market 𝐵. Figure 3 

visualizes the ensuing demand system along the two consumer 

dimensions, 𝑋 and 𝑌, and illustrates that four demand segments 

can exist, depending on whether a consumer decides to use the 

services of Platform 1 or 2 in Market 𝐵 and whether or not the 

consumer benefits from data cross-use: Consumers with 𝑌 > 𝑌𝐴 

do not consume the service of Platform 1 in Market 𝐴 due to 

high privacy costs and hence they do not benefit from data 

cross-use (NS), whereas consumers with 𝑌 ≤ 𝑌𝐴 use the service 

of Platform 1 in Market 𝐴 and could benefit from data cross-use 

(S). Of the consumers for which data from Market 𝐴 exists 

(does not exist), those with 𝑋 < 𝑋𝑆 (𝑋 < 𝑋𝑁𝑆) use the service of 

Platform 1 in Market 𝐵. As shown in the visualization in Figure 

3, we found that more consumers tend to choose the service of 

Platform 1 in Market 𝐵 whenever data cross-use regulation is 

not strict (𝜌 < 1, 𝛿 < 1), so that 𝑋𝑁𝑆 < 𝑋𝑆. Hence, Platform 1 

retains some competitive advantage over those consumers on 

which it already has data. 

In Appendix D we show that the main results of our base 

model continue to hold. Although only some consumers 

benefit from data cross-use, this does not qualitatively 

change the strategic trade-offs as long as there is at least 

some overlap in the consumer base across the two markets. 

Different Market Sizes for the Primary Market and 
Secondary Market 

In the base model, we assume that Markets 𝐴 and 𝐵 are of 

equal size. In Appendix E, we study an extension, where the 

size of Market 𝐴 relative to Market 𝐵 can be varied through 

parameter 𝛼 ∈ (0,1). For a large 𝛼, Market 𝐴 is the larger 

market, and for a small 𝛼, Market 𝐵 is larger. For markets of 

equal size (𝛼 = 1/2) we obtained the same results as in the 

base model. We found that when Market 𝐴 is small, and thus 

less relevant for Platform 1’s strategy and consumer welfare, 

Platform 1 has less incentive to innovate in Market 𝐴, which 

also lowers demand and the data available for cross-use. The 

only qualitative change to our previous results is that the 

intermediate region in Figure 2a—where data cross-use 

regulation yields an overall lower consumer surplus than no 

regulation but yet improves consumer surplus in Market 𝐵—

gradually disappears as 𝛼 becomes smaller. This is because 

for a small 𝛼, since Market 𝐴 does not contribute as much to 

consumer welfare, the consumer surplus outcome of Market 

𝐵 dominates the overall consumer surplus outcome. In 

contrast, if Market 𝐴 is large (𝛼 is large), it becomes more 

likely that data cross-use regulation will negatively affect 

consumer surplus, as the negative impact on Market 𝐴 

dominates (see Figure E1 in the Appendix). 

Model with General Functional Form for Data 
Cross-Use Benefit  

In the base model we derived our insights based on a specific 

functional form, 𝛹𝑖, i.e., how data cross-use impacts 

demand. In Appendix F we show that our results hold when 

considering more general functional forms of 𝛹𝑖.

 

Figure 3. Consumer Demand Under Personalized Data Cross-Use 
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Conclusion and Policy Implications 

The cross-use of data for different services is prevalent within 

digital platform ecosystems and allows dominant platforms to 

leverage insights from their primary markets to gain a 

competitive edge in secondary markets. Although data cross-

use yields efficiencies and quality improvements for data-

driven services, policymakers around the world are concerned 

with the economic power and distortion of competition and 

innovation incentives that may accompany data cross-use and 

market leverage. It has been suggested that data siloing (i.e., 

disallowing the cross-use of data within the platform 

ecosystem) and mandated data sharing with rivals are distinct 

and targeted policy interventions to restore competition and 

innovation in data-driven digital markets (e.g., Argenton & 

Prüfer, 2012; Krämer & Schnurr, 2022; Prüfer & 

Schottmüller, 2021; Parker et al., 2021). Both policies already 

apply to digital gatekeepers under the European Union’s 

Digital Markets Act (DMA)—the world’s first comprehensive 

regulation for digital platforms. 

We present an analytical model on data cross-use in digital 

platform ecosystems, which allowed us to analyze the impact 

of data siloing and data sharing obligations, as well as their 

interaction, on competition, innovation and, ultimately, 

consumer surplus and total welfare. Based on our results, we 

draw several important insights for the regulation of data 

cross-use in digital platform ecosystems that can inform 

current and future regulation of digital markets. 

First, under a robust set of assumptions, we show that the 

optimal policy is to mandate as much data sharing as possible, 

but not to mandate data siloing (Propositions 2 to 4, Insight 4). 

Although both policies level the playing field with respect to 

competition, they have vastly different impacts on innovation 

(Proposition 1, Insights 1 and 2) and consumer welfare 

(Propositions 2 to 4, Insight 3). Our analysis shows that a strict 

data siloing obligation is a problematic remedy that tends to 

reduce (consumer) welfare and leads to the least innovation in 

the primary market—i.e., even below the level without 

regulation (Insight 3). Arguably, data siloing is also easier to 

implement and to administer than a data sharing obligation, 

which would make it a seemingly attractive remedy for 

policymakers. However, our results suggest that the ease of 

implementation should not be a guiding principle for 

policymakers; rather, a hands-off approach with respect to 

data siloing may even be better after all. If policymakers want 

to nevertheless impose data siloing obligations, e.g., due to 

political pressure, a more lenient data siloing provision is 

preferable. This could be achieved, for example, by allowing 

data cross-use by default unless consumers actively opt out. 

However, under the EU’s Digital Markets Act, data siloing is 

the default and consumers must actively opt in to data cross-

use, representing a rather strict data siloing regime. 

Further, although optimal in theory, mandated data sharing 

can never be fully achieved in practice due to technical and 

legal limitations. Digital platforms collect consumer data at a 

fine granular and individual level, such as individual clicks 

and search queries. In order to establish a level playing field, 

this data would need to be shared instantaneously with rivals, 

and in full detail. This is practically infeasible in most 

applications due to the sheer amount of data that would need 

to be shared (and the potential for many recipients) and due to 

privacy regulation. However, our results suggest that this 

should not discourage policymakers from considering 

mandated data sharing and fostering research on how data can 

be efficiently shared in a privacy-preserving manner. For 

example, technological measures (such as federated learning 

and differential privacy) and institutional measures (such as 

third-party data trusts, or in-situ rights to run one’s own 

algorithms on the regulated platform’s data infrastructure) 

could be taken to overcome some of the privacy concerns (for 

a more detailed discussion see Krämer & Schnurr, 2022; 

Parker et al., 2021). 

Second, although more mandated data sharing is optimal from 

a consumer welfare and total welfare perspective when 

considering the entire ecosystem, this remedy is not without 

its trade-offs. While mandated data sharing increases the level 

of competition in the secondary market and stimulates 

innovation incentives by the rival platform (Proposition 1), 

which leads to an increase in welfare, mandated data sharing 

lowers innovation incentives by the regulated platform, both 

in the primary (regulated) market (Proposition 1, Insight 1) 

and in the secondary market (Insight 2). Depending on the size 

and importance of the primary market, this trade-off and its 

implications for aggregate (consumer) welfare could play out 

differently in practice. Typically, the primary market is large 

and of societal importance, as it otherwise would not be 

subject to regulation. In such cases, the negative effects of data 

sharing regulation become more pronounced due to a 

relatively strong reduction in innovation incentives in the 

primary market and the ensuing effects on data generation, 

which is the foundation for data cross-use and the associated 

efficiencies. Thus, when imposing mandated data sharing, 

policymakers need to carefully monitor the effects in the 

primary and secondary markets separately, noting that 

opposing trends are to be expected. If the negative effects in 

the primary markets are particularly strong, the data sharing 

policy may need to be reevaluated (e.g., by limiting the scale 

of scope of data to be shared), as policymakers may otherwise 

run the risk of killing the goose that lays the golden eggs. 

Third, our results highlight that data sharing regulation and 

data siloing regulation interact: They cannot be considered in 

isolation, and one is not a substitute for the other. With more 

data siloing, less data becomes available for sharing. While 

data sharing preserves and shares the efficiencies generated 
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through data cross-use, data siloing limits such data 

efficiencies. We found that in comparison to no regulation, 

data sharing regulation increases (consumer) welfare only if 

the level of data siloing is low (Insight 3). Further, more data 

siloing can increase the innovation effort of the rival, but only 

if the level of data sharing is low (Proposition 1). If the level 

of data sharing is high, an increase in data siloing has the 

opposite effect. Thus, policymakers will need to consider both 

types of data cross-use regulation jointly in order to account 

for this interaction. It seems that policymakers are currently 

willing to impose much stricter data siloing provisions than 

data sharing provisions. For example, the Digital Markets Act 

(European Commission, 2020) foresees data sharing only for 

regulated search engines, whereas data siloing is imposed on 

all regulated platforms. In fact, our results suggest that the 

opposite would be more favorable for increasing consumer 

welfare, i.e., imposing a less strict data siloing regime in 

tandem with more comprehensive data sharing obligations. 

Limitations and Future Research 

Finally, we point to some limitations and avenues for future 

research. Like any theoretical model, our model can be 

criticized based on its assumptions and the focus of the 

analysis. Indeed, our model could be extended in a number of 

ways. First, future research could incorporate data-driven 

network effects (Gregory et al., 2021) not only across markets 

but also within each market. This would amplify the benefits 

of attaining a larger market share and thus lead to a higher 

level of innovation in the primary market as well as a stronger 

degree of competition in the secondary market. However, this 

would not change our insights qualitatively. With mandated 

data siloing or data sharing, the incentives to innovate in the 

primary market would still be lower, and the degree of 

competition in the secondary market would still be higher than 

without these regulatory interventions. 

Second, future research could also allow for competition in the 

primary market with Platform 1 being the dominant intermarket 

player. This would also not change our insights qualitatively 

because it would not fundamentally change the trade-offs 

considered. However, the degree of competition in the primary 

market would moderate the impact of the regulation on 

innovation incentives in the primary market. The stronger the 

competition in the primary market, the less Platform 1 would 

reduce its level of innovation following a regulation. In 

consequence, the negative impact of data sharing or data siloing 

on welfare in the primary market would be dampened. 

However, we note that economic regulation can only be 

imposed if a platform possesses significant market power, 

 
16 For example, under the current Digital Markets Act, platforms need to 

serve as a “gatekeeper” for a given “core platform service” (e.g., online 

which we proxy here through a monopoly position in the 

primary market. Thus, in practice, a scenario in which Platform 

1 would face significant competition in its primary market 

would most certainly preclude the possibility of imposing data 

sharing or data siloing regulation in the first place.16 

Third, future research could also seek to develop a more 

dynamic framework to study the successive entry of a 

dominant platform in more and more related markets. Our 

static, two-stage two-market model could provide a useful 

starting point for this. 
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Appendix A  

Proofs 

Proof of Lemma 1: Differentiating the profit of Platform 1 with respect to 𝑞𝐴 and 𝑞1 and the profit of Platform 2 with respect to 𝑞2, yields 

the following first order conditions 

∂𝛱1
∂𝑞𝐴

= 𝑃𝐴 + 𝑞𝐴
∂𝑃𝐴
∂𝑞𝐴

= 0, 
∂𝛱𝑖
∂𝑞𝑖

= 𝑃𝑖 + 𝑞𝑖
∂𝑃𝑖
∂𝑞𝑖

= 0, for 𝑖 ∈ {1,2}. 

Solving the above first order conditions yields the equilibrium demand in Market 𝐴 and the demand in Market 𝐵 as 𝑞𝐴(𝑣𝐴) =
1+𝑣𝐴

6
, 

𝑞1(𝑞𝐴
𝑒 , 𝑣1, 𝑣2) =

1+2𝑣1−𝑣2+𝜃(2−𝛿)(1−𝜌)𝑞𝐴
𝑒

9
, 𝑞2(𝑞𝐴

𝑒 , 𝑣2, 𝑣1) =
1+2𝑣2−𝑣1−𝜃(1−𝜌)(1−2𝛿)𝑞𝐴

𝑒

9
. In equilibrium, the consumers’ anticipated value needs to 

be correct. Thus, we solve the demands while imposing 𝑞𝐴 = 𝑞𝐴
𝑒  where 𝑞𝐴

𝑒  is the anticipated demand in Market 𝐴. Substituting this in the demand 

functions yields: 

𝑞1(𝑣1, 𝑣2, 𝑣𝐴) =
6(1 + 2𝑣1 − 𝑣2) + 𝜃(2 − 𝛿)(1 − 𝜌)(1 + 𝑣𝐴)

54
,

𝑞2(𝑣2, 𝑣1, 𝑣𝐴) =
6(1 + 2𝑣2 − 𝑣1) − 𝜃(1 − 2𝛿)(1 − 𝜌)(1 + 𝑣𝐴)

54
,

 

with 𝑞1 + 𝑞2 =
12+6(𝑣2+𝑣1)+𝜃(1+𝛿)(1−𝜌)(1+𝑣𝐴)

54
. From the above, it follows that total output and 𝑞1 rise in 𝑣𝐴 and 𝜃. Differentiating 𝑞2 with respect 

to 𝑣𝐴 and with respect to 𝜃 yields 
∂𝑞2

∂𝑣𝐴
= −

𝜃(1−2𝛿)(1−𝜌)

54
 and 

∂𝑞2

∂𝜃
= −

(1−2𝛿)(1−𝜌)(1+𝑣𝐴)

54
. The sign of the above two expressions is positive for 

𝛿 ≥ 1/2 and negative otherwise. Similarly, it also follows that as 𝛿 increases 𝑞1 falls while 𝑞2 increases. Total demand in Market 𝐵 rises with 

an increase in 𝛿. Likewise, it follows that as 𝜌 increases 𝑞1 and total market demand falls. Differentiating 𝑞2 with respect to 𝜌 yields 
∂𝑞2

∂𝜌
=

𝜃(1−2𝛿)(1+𝑣𝐴)

54
. This comparative static is positive for 𝛿 < 1/2 and negative otherwise. 

Proof of Proposition 1: Differentiating the profit of Platform 1 and Platform 2 with respect to 𝑣1 and 𝑣2, respectively and employing the envelope 

theorem yields the following first order conditions: 

∂𝛱𝑖
∂𝑣𝑖

= (
∂𝑃𝑖
∂𝑣𝑖⏟

Direct effect (+)

+
∂𝑃𝑖
∂𝑞−𝑖

∂𝑞−𝑖
∂𝑣𝑖⏟      

Indirect effect (+)

)𝑞𝑖 −
∂𝐼(𝑣𝑖)

∂𝑣𝑖
= 0 for 𝑖 ∈ {1,2}.                                                 (6) 

Solving the above system of equations yields the platforms’ innovation efforts in Market 𝐵 as a function of the innovation effort in Market 𝐴 as 

follows: 𝑣1
𝐵𝑅(𝑣𝐴) =

2(30+𝜃(1−𝜌)(1+𝑣𝐴)(14−9𝛿))

345
 and 𝑣2

𝐵𝑅(𝑣𝐴) =
2(30−𝜃(1−𝜌)(1+𝑣𝐴)(9−14𝛿))

345
. Differentiating 𝑣1

𝐵𝑅(𝑣𝐴) with respect to 𝑣𝐴, it is 

straightforward to observe that as 𝑣𝐴 increases, Platform 1 sets higher innovation levels also in Market 𝐵—i.e., 
∂𝑣1

𝐵𝑅(𝑣𝐴)

∂𝑣𝐴
=
2(𝜃(1−𝜌)(14−9𝛿))

345
> 0. 

This confirms that as 𝑣𝐴 increases Platform 1 increases investments in Market 𝐵. Similarly, differentiating 𝑣2
𝐵𝑅(𝑣𝐴) with respect to 𝑣𝐴 yields 

∂𝑣2
𝐵𝑅(𝑣𝐴)

∂𝑣𝐴
= −

2𝜃(1−𝜌)(9−14𝛿)

345
. This confirms that as 𝑣𝐴 increases Platform 2 increases investments in Market 𝐵 if and only if 𝛿 > 9/14. 

Solving Equations (2) and (6) simultaneously, yields the following innovation levels in Market 𝐴 and Market 𝐵 as 𝑣𝐴
⋆ =

(345+(2−𝛿)𝜃(1−𝜌)(30+𝜃(14−9𝛿)(1−𝜌)))

(1725−(2−𝛿)(14−9𝛿)(1−𝜌)2𝜃2)
, 𝑣1
⋆ =

12(25+𝜃(14−9𝛿)(1−𝜌))

(1725−(2−𝛿)(14−9𝛿)(1−𝜌)2𝜃2)
, and  

𝑣2
⋆ = 𝑣1

⋆ −
(4(1 − 𝛿)(1 − 𝜌)𝜃(69 + 𝜃(1 − 𝜌)(2 − 𝛿)))

(1725 − (2 − 𝛿)(14 − 9𝛿)(1 − 𝜌)2𝜃2)
. 

Differentiating the innovation level by Platform 1 in Market 𝐴 with respect to 𝛿 yields: 
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∂𝑣𝐴
⋆

∂𝛿
= −

90𝜃(1 − 𝜌) (575 + 46𝜃(1 − 𝜌)(16 − 9𝛿) + 3(1 − 𝜌)2𝜃2(2 − 𝛿)2)⏞                                    
𝒜1

(1725 − (2 − 𝛿)(14 − 9𝛿)(1 − 𝜌)2𝜃2)2
< 0. 

The sign of the above expression depends on the sign of expression denoted by 𝒜1 = (575 + 46𝜃(1 − 𝜌)(16 − 9𝛿) + 3(1 − 𝜌)
2𝜃2(2 − 𝛿)2) 

in the numerator. Differentiating this expression with respect to 𝛿 yields 
∂𝒜1

∂𝛿
= −6𝜃(1 − 𝜌)(69 + 𝜃(2 − 𝛿)(1 − 𝜌)) < 0. Further, we note 

that the value of 𝒜1 at 𝛿 = 1 given by 𝒜1|𝛿=1 = 575 + 𝜃(1 − 𝜌)(322 + 3𝜃(1 − 𝜌)) > 0. Thus, we can state that 𝒜1 is positive in our 

relevant parameter region. Using this observation, we confirm that 
∂𝑣𝐴

⋆

∂𝛿
< 0. 

Differentiating the innovation level by Platform 1 in Market 𝐵 with respect to 𝛿 yields: 

∂𝑣1
⋆

∂𝛿
= −

12𝜃(1 − 𝜌) (15525 + 50𝜃(1 − 𝜌)(16 − 9𝛿) + (1 − 𝜌)2𝜃2(14 − 9𝛿)2)⏞                                      
𝒜2

((1725 − (2 − 𝛿)(14 − 9𝛿)(1 − 𝜌)2𝜃2))
2 < 0. 

The sign of the above expression depends on the sign of expression denoted by 𝒜2 = (15525 + 50𝜃(1 − 𝜌)(16 − 9𝛿) + (1 − 𝜌)
2𝜃2(14 −

9𝛿)2) in the numerator. Differentiating this expression with respect to 𝛿 yields 
∂𝒜2

∂𝛿
= −18𝜃(1 − 𝜌)(25 + 𝜃(1 − 𝜌)(14 − 9𝛿)) < 0. Further, 

we note that the value of 𝒜2 at 𝛿 = 1 given by 𝒜2|𝛿=1 = 25 (621 + 𝜃(1 − 𝜌)(14 + 𝜃(1 − 𝜌))) > 0. Thus, we can state that 𝒜2 is positive 

in our relevant parameter region. Using this observation, we confirm that 
∂𝑣1

⋆

∂𝛿
< 0. 

Differentiating the innovation level by Platform 2 in 𝐵 with respect to 𝛿 yields: 

∂𝑣2
⋆

∂𝛿
=
4𝜃(1 − 𝜌) (72450 + 75𝜃(1 − 𝜌)(37 − 28𝛿) − 6𝜃2(1 − 𝜌)2(52 + 9𝛿(9 − 7𝛿)) − 5𝜃3(2 − 𝛿)2(1 − 𝜌)3)⏞                                                            

𝒜3

((1725 − (2 − 𝛿)(14 − 9𝛿)(1 − 𝜌)2𝜃2))
2 > 0 

The sign of the above expression depends on the sign of expression denoted by 𝒜3 = (72450 + 75𝜃(1 − 𝜌)(37 − 28𝛿) −

6𝜃2(1 − 𝜌)2(52 + 9𝛿(9 − 7𝛿)) − 5𝜃3(2 − 𝛿)2(1 − 𝜌)3) in the numerator. Differentiating this expression with respect to 𝛿 yields 
∂𝒜3

∂𝛿
=

−2𝜃(1 − 𝜌)(1050 + 27𝜃(1 − 𝜌)(9 − 14𝛿) − 5𝜃2(1 − 𝜌)2(2 − 𝛿)) < 0. Further, we note that the value of 𝒜3 at 𝛿 = 1 given by 𝒜3|𝛿=1 =

72450 + 5𝜃(1 − 𝜌) (135 + 𝜃(84 + 𝜃(1 − 𝜌))) > 0. Thus, we can state that 𝒜3 is positive in our relevant parameter region. Using this 

observation, we confirm that 
∂𝑣2

⋆

∂𝛿
> 0. 

Differentiating the innovation level by Platform 1 in Market 𝐴 with respect to 𝜌 yields: 

∂𝑣𝐴
⋆

∂𝜌
= −

30𝜃(2 − 𝛿) (1725 + 𝜃(1 − 𝜌)(14 − 9𝛿)(138 + 𝜃(2 − 𝛿)(1 − 𝜌)))
⏞                                    

𝒜4

((1725 − (2 − 𝛿)(14 − 9𝛿)(1 − 𝜌)2𝜃2))
2 < 0. 

The sign of the above expression depends on the sign of expression denoted by 𝒜4 = (1725 + 𝜃(1 − 𝜌)(14 − 9𝛿)(138 + 𝜃(2 − 𝛿)(1 − 𝜌))) 

in the numerator. Differentiating this expression with respect to 𝛿 yields 
∂𝒜4

∂𝛿
= −2𝜃(1 − 𝜌)(621 + 𝜃(16 − 9𝛿)(1 − 𝜌)) < 0. Further, we note 

that the value of 𝒜4 at 𝛿 = 1 given by 𝒜4|𝛿=1 = 1725 + 5𝜃(1 − 𝜌)(138 + 𝜃(1 − 𝜌)) > 0. Thus, we can state that 𝒜4 is positive in our 

relevant parameter region. Using this observation, we confirm that 
∂𝑣𝐴

⋆

∂𝜌
< 0. 

Differentiating the innovation level by Platform 1 in Market 𝐵 with respect to 𝜌 yields: 

∂𝑣1
⋆

∂𝜌
= −

12𝜃(14 − 9𝛿) (1725 + 𝜃(2 − 𝛿)(1 − 𝜌)(50 + 𝜃(14 − 9𝛿)(1 − 𝜌)))
⏞                                  

𝒜5

((1725 − (2 − 𝛿)(14 − 9𝛿)(1 − 𝜌)2𝜃2))
2 < 0. 
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The sign of the above expression depends on the sign of expression denoted by 𝒜5 = (1725 + 𝜃(2 − 𝛿)(1 − 𝜌)(50 + 𝜃(14 − 9𝛿)(1 − 𝜌))) 

in the numerator. Differentiating this expression with respect to 𝛿 yields 
∂𝒜5

∂𝛿
= −2𝜃(1 − 𝜌)(25 + 𝜃(1 − 𝜌)(16 − 9𝛿)) < 0. Further, we note 

that the value of 𝒜5 at 𝛿 = 1 given by 𝒜5|𝛿=1 = 1725 + 5𝜃(1 − 𝜌)(10 + 𝜃(1 − 𝜌)) > 0. Thus, we can state that 𝒜5 is positive in our 

relevant parameter region. Using this observation, we confirm that 
∂𝑣1

⋆

∂𝜌
< 0. 

Differentiating the innovation level by Platform 2 in 𝐵 with respect to 𝜌 yields: 

∂𝑣2
⋆

∂𝜌
=

12𝜃(9 − 14𝛿) (1725 + (2 − 𝛿)𝜃(1 − 𝜌)(50 + 𝜃(14 − 9𝛿)(1 − 𝜌))⏞                                  
𝒜5

((1725 − (2 − 𝛿)(14 − 9𝛿)(1 − 𝜌)2𝜃2))
2 .

 

Recall that 𝒜5 has been established as being positive. Therefore, the sign of the above comparative static expression depends on the sign of 

(9 − 14𝛿), which is negative for 𝛿 > 9/14 and positive otherwise. Thus, it follows that 
∂𝑣2

⋆

∂𝜌
 is positive when 𝛿 < 9/14 and negative otherwise. 

Proof of Proposition 2: The consumer surplus in Market 𝐴 is 𝐶𝑆𝐴 = ∫
(𝑟+𝑣𝐴

⋆−𝑃𝐴
⋆)

3

1

𝑟𝐴
⋆ 𝑑𝑟 =

3(𝑞𝐴
⋆ )2

2
, where 𝑃𝐴

⋆ = 1 + 𝑣𝐴
⋆ − 3𝑞𝐴

⋆ , 𝑟𝐴
⋆ ≜ 𝑃𝐴

⋆ − 𝑣𝐴
⋆ and 

𝑞𝐴
⋆ =

5(69+𝜃(2−𝛿)(1−𝜌))

(1725−(2−𝛿)(14−9𝛿)(1−𝜌)2𝜃2)
. Similarly, the consumer surplus in Market 𝐵 can be obtained as 𝐶𝑆𝐵 = ∫

(𝑟+𝑣1
⋆+𝛹1

⋆−𝑃1
⋆)

3

1

𝛷⋆
𝑑𝑟 =

3(𝑞1
⋆+𝑞2

⋆)2

2
, 

where 𝛹1
⋆ = 𝜃(1 − 𝜌)𝑞𝐴

⋆ , 𝛹2
⋆ = 𝜃(1 − 𝜌)(1 − 𝛿)𝑞𝐴

⋆ , 𝑃𝑖
⋆ = 1 + 𝑣𝑖

⋆ +𝛹𝑖
⋆ − 3(𝑞1

⋆ + 𝑞2
⋆), 𝛷⋆ ≜ 𝑃1

⋆ − 𝑣1
⋆ −𝛹1

⋆ and 𝑞1
⋆ + 𝑞2

⋆ =
450+45(1+𝛿)𝜃(1−𝜌)−3(2−𝛿)(1−𝛿)𝜃2(1−𝜌)2

(1725−(2−𝛿)(14−9𝛿)(1−𝜌)2𝜃2)
. Notice that a sufficient statistic for the consumer surplus is the total demand in each market. 

Differentiating with respect to 𝜌 yields: 

∂𝑞𝐴
⋆

∂𝜌
= −

5(2 − 𝛿)𝜃 (1725 + 𝜃(1 − 𝜌)(14 − 9𝛿)(138 + 𝜃(2 − 𝛿)(1 − 𝜌)))
⏞                                    

𝒜4

(1725 − (2 − 𝛿)(14 − 9𝛿)(1 − 𝜌)2𝜃2)2
< 0

∂(𝑞1
⋆ + 𝑞2

⋆)

∂𝜌
= −

45(1 + 𝛿)𝜃 (1725 + 𝜃(1 − 𝜌)(2 − 𝛿)(50 + 𝜃(1 − 𝜌)(14 − 9𝛿)))
⏞                                  

𝒜5

(1725 − (2 − 𝛿)(14 − 9𝛿)(1 − 𝜌)2𝜃2)2
< 0.

 

The above two comparative statics are negative because the expressions denoted by 𝒜4 and 𝒜5 have been shown as being positive in the relevant 

range. From the above, it follows that the total consumer surplus in both Markets 𝐴 and 𝐵 falls with an increase in 𝜌. Differentiating the total 

demand in each market with respect to 𝛿 yields 

∂𝑞𝐴
⋆

∂𝛿
= −

15(1 − 𝜌)𝜃 (575 + 46𝜃(1 − 𝜌)(16 − 9𝛿) + 3(1 − 𝜌)2𝜃2(2 − 𝛿)2)⏞                                    
𝒜1

(1725 − (2 − 𝛿)(14 − 9𝛿)(1 − 𝜌)2𝜃2)2
< 0,

∂(𝑞1
⋆ + 𝑞2

⋆)

∂𝛿
=

15(1 − 𝜌)𝜃 (5175 + 75𝜃(1 − 𝜌)(1 − 2𝛿) − 9𝜃2(1 − 𝜌)2(20 − 3𝛿(2 + 𝛿)) − 𝜃3(1 − 𝜌)3(2 − 𝛿)2)⏞                                                        
𝒜6

(1725 − (2 − 𝛿)(14 − 9𝛿)(1 − 𝜌)2𝜃2)2
> 0.

 

The sign of 
∂𝑞𝐴

⋆

∂𝛿
 is always negative as we have previously established that 𝒜1 is positive. The sign of 

∂(𝑞1
⋆+𝑞2

⋆)

∂𝛿
 depends on the sign of expression 

denoted by 𝒜6 = (5175 + 75𝜃(1 − 𝜌)(1 − 2𝛿) − 9𝜃
2(1 − 𝜌)2(20 − 3𝛿(2 + 𝛿)) − 𝜃3(1 − 𝜌)3(2 − 𝛿)2) in the numerator. 

Differentiating this expression with respect to 𝛿 yields 
∂𝒜6

∂𝛿
= −𝜃(1 − 𝜌)(150 − 54(1 + 𝛿)𝜃(1 − 𝜌) − 2𝜃2(2 − 𝛿)(1 − 𝜌)2) < 0. Further, 

we note that the value of 𝒜6 at 𝛿 = 1 given by 𝒜6|𝛿=1 = 5175 − 𝜃(1 − 𝜌) (75 − 𝜃(1 − 𝜌)(99 + 𝜃(1 − 𝜌))) > 0. Thus, we can state that 

𝒜6 is positive in our relevant parameter region. Using this observation, we confirm that 
∂(𝑞1

⋆+𝑞2
⋆)

∂𝛿
> 0. Differentiating the total consumer surplus 

across markets yields: 

∂(𝐶𝑆𝐴
⋆ + 𝐶𝑆𝐵

⋆)

∂𝛿
=

𝜅

((1725 − (2 − 𝛿)(14 − 9𝛿)(1 − 𝜌)2𝜃2))
3 > 0, 
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where 𝜅 ≜ 45𝜃(𝜌 − 1)(3(𝛿 − 2)3(𝛿 − 1)𝜃5(𝜌 − 1)5 + 9(𝛿 − 2)(𝛿(𝛿(9𝛿 + 14) − 83) + 50)𝜃4(𝜌 − 1)4 + 15(𝛿(2𝛿(56𝛿 + 51) −
141) − 698)𝜃3(𝜌 − 1)3 + 5(2𝛿(1323𝛿 − 7946) + 24035)𝜃2(𝜌 − 1)2 + 5(62216𝛿 + 1391)𝜃(𝜌 − 1) − 2130375) > 0. In the 

following, we show that 𝜅 > 0. Differentiating 𝜅 with respect to 𝛿 four times, we observe that 
∂4𝜅

∂𝛿4
= −3240𝜃5(27 − 𝜃(1 − 𝜌))(1 − 𝜌)5 < 0. 

Next differentiating 𝜅 with respect to 𝛿 thrice and considering its value at 𝛿 = 1, we note that 
∂3𝜅

∂𝛿3
|𝛿=1 = 810𝜃

4 (560 −

3𝜃(1 − 𝜌)(32 + 𝜃(1 − 𝜌))) (1 − 𝜌)4 > 0. Next, differentiating 𝜅 with respect to 𝛿 twice and considering its value at 𝛿 = 1, we note that 

∂2𝜅

∂𝛿2
|𝛿=1 = −810𝜃

3 (1470 − 𝜃(1 − 𝜌) (730 + 𝜃(1 − 𝜌)(69 + 𝜃(1 − 𝜌)))) (1 − 𝜌)3 < 0. The above inequality follows from 0 ≤ 𝜌 ≤ 1, 

0 ≤ 𝛿 ≤ 1 and 0 < 𝜃 < 1. This implies that the slope of the first derivative of 𝜅 with respect to 𝛿 is always negative. Differentiating 𝜅 with 

respect to 𝛿 and observing its sign at 𝛿 = 1 yields 
∂𝜅

∂𝛿
|𝛿=1 = 45𝜃

2(1 − 𝜌)2 (311080 + 𝜃(1 − 𝜌) (53000 − 3𝜃 (1995 + 𝜃(54 +

𝜃(1 − 𝜌))))) > 0. The above inequality is always positive. Finally, it remains to be shown that at 𝜅 > 0 at 𝛿 = 0, which holds as 𝜅|𝛿=0 =

45𝜃(1 − 𝜌)𝛾 > 0 where 𝛾 = (2130375 + 𝜃(1 − 𝜌) (6955 − 𝜃(1 − 𝜌) (120175 + 6𝜃(1 − 𝜌) (1745 − 2𝜃(75 + 2𝜃(1 − 𝜌)))))) > 0. 

Proof of Proposition 3: The equilibrium profit of Platform 1 and Platform 2 is given as 𝛱1
⋆ = 𝑃1

⋆𝑞1
⋆ + 𝑃𝐴

⋆𝑞𝐴
⋆ −

(𝑣𝐴
⋆ )2

2
−
(𝑣1
⋆)2

2
 and 𝛱2

⋆ = 𝑃2
⋆𝑞2
⋆ −

(𝑣2
⋆)2

2
. Differentiating the profit of Platform 1 given by 𝛱1

⋆ with respect to 𝛿 yields 

∂𝛱1
⋆

∂𝛿
= −

18𝜃(1−𝜌)𝜁

(1725−𝜃2(1−𝜌)2(28−32𝛿+9𝛿2))
3 < 0, where 𝜁 ≜ 7374375 − 15(𝛿 − 2)3(9𝛿 − 14)𝜃4(𝜌 − 1)4 − 2(𝛿(3𝛿(859𝛿 − 6162) +

39836) − 26952)𝜃3(𝜌 − 1)3 + 100(14𝛿 − 9)(27𝛿 − 46)𝜃2(𝜌 − 1)2 + 50(55933𝛿 − 87318)𝜃(𝜌 − 1). Differentiating the profit of 

Platform 1 given by 𝛱1
⋆ with respect to 𝜌 yields 

∂𝛱1
⋆

∂𝜌
= −

6𝜃𝜎

(1725−𝜃2(1−𝜌)2(28−32𝛿+9𝛿2))
3 < 0, where 𝜎 ≜ 405𝛿5𝜃4(𝜌 − 1)4 − 18𝛿4𝜃3(𝜌 −

1)3(205𝜃(𝜌 − 1) − 859) + 40𝛿3𝜃2(𝜌 − 1)2(𝜃(𝜌 − 1)(335𝜃(𝜌 − 1) − 3223) − 2835) − 6𝛿2𝜃(𝜌 − 1)(2𝜃(𝜌 − 1)(4𝜃(𝜌 −
1)(505𝜃(𝜌 − 1) − 8101) − 39675) + 1398325) + 3𝛿(8𝜃(𝜌 − 1)(2𝜃(𝜌 − 1)(𝜃(𝜌 − 1)(455𝜃(𝜌 − 1) − 10558) − 12750) +
1091475) − 7374375) − 2(14𝜃(𝜌 − 1) − 25)(2𝜃(𝜌 − 1)(14𝜃(𝜌 − 1)(10𝜃(𝜌 − 1) − 291) − 11325) + 688275). In the following, we 

show that 𝜁 and 𝜎 are always positive using continuity and the sign of its slope.  

To show that 𝜁>0, we differentiate 𝜁 thrice with respect to 𝛿 thrice, which yields 
∂3𝜁

∂𝛿3
= 36𝜃3(859 + 10𝜃(17 − 9𝛿)(1 − 𝜌))(1 − 𝜌)3 > 0. 

Next differentiating 𝜁 with respect to 𝛿 twice and considering its value at 𝛿 = 0, we note that 
∂2𝜁

∂𝛿2
|𝛿=0 = 72𝜃

2 (1050 −

𝜃(1 − 𝜌)(1027 + 80𝜃(1 − 𝜌))) (1 − 𝜌)2. The above inequality is positive for 0 < 𝜃 < min{
1

160
√1390729√

1

(𝜌−1)2
+

1027

160(𝜌−1)
, 1}. Instead 

the above inequality is negative for 𝜃 >
1

160
√1390729√

1

(𝜌−1)2
+

1027

160(𝜌−1)
. Next, differentiating 𝜁 with respect to 𝛿 and it is then sufficient to 

show that at 𝛿 = 1 and at 𝛿 = 0 the sign stays the same. We find that 
∂𝜁

∂𝛿
|𝛿=0 = −2𝜃(1 − 𝜌)(1398325 + 2𝜃(1 − 𝜌) (22175 −

2𝜃(1 − 𝜌)(9959 + 450𝜃(1 − 𝜌))) < 0 and 
∂𝜁

∂𝛿
|𝛿=1 = −10𝜃(1 − 𝜌) (279665 + 𝜃(1 − 𝜌) (1310 − 𝜃(1 − 𝜌)(2119 + 36𝜃(1 − 𝜌)))) <

0. The inequalities in the above cases are always negative, thus confirming that the first derivative of 𝜁 with respect to 𝛿 is always negative. Now, 

it is sufficient to show that at 𝛿 = 1, 𝜁 is positive which is given as 𝜁|𝛿=1 = 7374375 + 25𝜃(1 − 𝜌) (62770 − 𝜃(1 − 𝜌) (380 −

𝜃(1 − 𝜌)(242 + 3𝜃(1 − 𝜌)))) > 0. 

To show that 𝜎>0, differentiate 𝜎 four times with respect to 𝛿, which yields 
∂4𝜎

∂𝛿4
= −216𝜃3(1 − 𝜌)3(1718 + 5𝜃(1 − 𝜌)(82 − 45𝛿)) < 0. 

Next differentiating 𝜎 with respect to 𝛿 thrice and considering its value at 𝛿 = 0, we note that 
∂3𝜎

∂𝛿3
|𝛿=0 = −240𝜃

2(1 − 𝜌)2 (2835 −

𝜃(3223 + 335𝜃(1 − 𝜌))) < 0. The above inequality is negative for 𝜃 <
√14186629−3223

670(1−𝜌)
 and positive otherwise. Differentiating 𝜎 with respect 

to 𝛿 twice and considering its value at 𝛿 = 1 and at 𝛿 = 0 is respectively given as 
∂2𝜎

∂𝛿2
|𝛿=1 = 60𝜃(1 − 𝜌) (279665 + 𝜃(1 − 𝜌) (4530 −

𝜃(1 − 𝜌)(3162 + 71𝜃(1 − 𝜌)))) > 0, and 
∂2𝜎

∂𝛿2
|𝛿=0 = 12𝜃 (1398325 + 2𝜃(1 − 𝜌) (39675 − 4𝜃(1 − 𝜌)(8101 + 505𝜃(1 − 𝜌)))) > 0. 

This confirms that 
∂2𝜎

∂𝛿2
 is always positive. Next, differentiating 𝜎 with respect to 𝛿 and considering its value at 𝛿 = 1, we note that 

∂𝜎

∂𝛿
|𝛿=1 =

−75 (294975 + 𝜃(1 − 𝜌) (125540 − 𝜃2(720 + 11𝜃(1 − 𝜌)))) < 0. This confirms that 
∂𝜎

∂𝛿
 is always negative. Now, it is sufficient to show 
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that at 𝛿 = 1 we find 𝜎 > 0 which is given as 𝜎|𝛿=1 = 125(98325 + 𝜃(1 − 𝜌) (20790 − 𝜃(1 − 𝜌) (180 + 𝜃(86 + 𝜃(1 − 𝜌))))) > 0. 

This proves that 𝜎 > 0 for all 0 ≤ 𝜌 ≤ 1, 0 ≤ 𝛿 ≤ 1 and 0 < 𝜃 < 1. 

We can proceed in the same manner to show the effect of data cross-use regulation on the profits of Platform 2. Differentiating the profit of 

Platform 2, given by 𝛱2
⋆, with respect to 𝛿 yields 

∂𝛱2
⋆

∂𝛿
=

𝜒

(1725−𝜃2(1−𝜌)2(28−32𝛿+9𝛿2))
3 > 0, where 𝜒 ≜ (38𝜃(𝜌 − 1)((𝛿 − 2)(𝛿 −

1)𝜃2(𝜌 − 1)2 + 3(14𝛿 − 9)𝜃(𝜌 − 1) − 75)(5(𝛿 − 2)2𝜃3(𝜌 − 1)3 + 6(9𝛿(7𝛿 − 9) − 52)𝜃2(𝜌 − 1)2 + 75(28𝛿 − 37)𝜃(𝜌 − 1) +

72450) > 0. Employing the same steps as above, we can show that this expression is positive. The explicit long proof is available upon request. 

Similarly, differentiating the profit of Platform 2 with respect to 𝜌 yields 
∂𝛱2

⋆

∂𝜌
=

𝜇

(1725−𝜃2(1−𝜌)2(28−32𝛿+9𝛿2))
3 < 0, where 𝜇 ≜ 114(14𝛿 − 9)𝜃 ((𝛿 − 2)𝜃(𝜌 − 1)((9𝛿 − 14)𝜃(𝜌 − 1) + 50) + 1725) ((𝛿 − 2)(𝛿 −

1)𝜃2(𝜌 − 1)2 + 3(14𝛿 − 9)𝜃(𝜌 − 1) − 75) with 𝜇 > 0 if and only if 𝛿 < 9/14 and negative otherwise. Employing the steps as above, we 

can show that this expression is positive. The explicit long proof is available upon request. 

Proof of Proposition 4: Total welfare in a market is the sum of consumer surplus and platform profits in both markets and is given as 𝑇𝑊⋆ =

𝐶𝑆𝐴
⋆ + 𝐶𝑆𝐵

⋆ +𝛱1
⋆ +𝛱2

⋆ =
𝑊

2((1725−(2−𝛿)(14−9𝛿)(1−𝜌)2𝜃2))
2, where 𝑊 ≜ 3(26708𝛿2 − 31346𝛿 + 17063)𝜃2(𝜌 − 1)2 − (𝛿 − 2)2(2𝛿(8𝛿 −

61) + 131)𝜃4(𝜌 − 1)4 + 6(𝛿 − 2)(𝛿(577𝛿 − 554) − 73)𝜃3(𝜌 − 1)3 − 10350(19𝛿 + 22)𝜃(𝜌 − 1) + 1987200. Differentiating the total 

welfare with respect to 𝛿 and 𝜌 is respectively given as 
∂𝑇𝑊⋆

∂𝛿
=

(1−𝜌)𝜃𝑊𝛿

2((1725−(2−𝛿)(14−9𝛿)(1−𝜌)2𝜃2))
3 > 0 and 

∂𝑇𝑊⋆

∂𝜌
=

−
𝜃𝑊𝜌

((1725−(2−𝛿)(14−9𝛿)(1−𝜌)2𝜃2))
3 < 0, where 𝑊𝛿 ≜ 339221250 − 6(𝛿(221972𝛿

2 − 262746𝛿 − 331879) + 183778)𝜃3(𝜌 − 1)3 −

650(𝛿 − 2)3(𝛿 − 1)𝜃5(𝜌 − 1)5 − 6(𝛿 − 2)(𝛿(𝛿(5193𝛿 − 1894) − 24311) + 19162)𝜃4(𝜌 − 1)4 − 10350(6𝛿(203𝛿 − 600) +

2975)𝜃2(𝜌 − 1)2 − 10350(33620𝛿 − 27961)𝜃(𝜌 − 1) > 0 and 𝑊𝜌 ≜ ((𝛿 − 2)(9𝛿 − 14)𝜃
2(𝜌 − 1)2 − 1725)(3(26708𝛿2 −

31346𝛿 + 17063)𝜃(𝜌 − 1) − 2(𝛿 − 2)2(2𝛿(8𝛿 − 61) + 131)𝜃3(𝜌 − 1)3 + 9(𝛿 − 2)(𝛿(577𝛿 − 554) − 73)𝜃2(𝜌 − 1)2 −

5175(19𝛿 + 22)) − 2(𝛿 − 2)(9𝛿 − 14)𝜃(𝜌 − 1)(3(26708𝛿2 − 31346𝛿 + 17063)𝜃2(𝜌 − 1)2 − (𝛿 − 2)2(2𝛿(8𝛿 − 61) +

131)𝜃4(𝜌 − 1)4 + 6(𝛿 − 2)(𝛿(577𝛿 − 554) − 73)𝜃3(𝜌 − 1)3 − 10350(19𝛿 + 22)𝜃(𝜌 − 1) + 1987200) > 0. To show these 

inequalities, we need to show that 𝑊𝛿 > 0 and 𝑊𝜌 > 0. To show that 𝑊𝛿 > 0, we employ continuity and the sign of its slope. Differentiating 

𝑊𝛿  with respect to 𝛿 four times yields 
∂4𝑊𝛿

∂𝛿4
= −48𝜃4(1 − 𝜌)4(15579 − 325𝜃(1 − 𝜌)) < 0. The above inequality follows directly from 0 ≤

𝜌 ≤ 1, 0 ≤ 𝛿 ≤ 1 and 0 < 𝜃 < 1. Next, differentiating 𝑊𝛿  with respect to 𝛿 thrice and then considering its sign at 𝛿 = 1 we find 
∂3𝑊𝛿

∂𝛿3
|𝛿=1 =

36𝜃3(1 − 𝜌)3 (221972 − 𝜃(1 − 𝜌)(8492 + 325𝜃(1 − 𝜌))) > 0. The above inequality follows from 0 ≤ 𝜌 ≤ 1 and 0 < 𝜃 < 1. 

Differentiating 𝑊𝛿  with respect to 𝛿 twice and considering its sign at 𝛿 = 1, we observe 
∂2𝑊𝛿

∂𝛿2
|𝛿=1 = −60𝜃

2(1 − 𝜌)2(420210 −

80634𝜃(1 − 𝜌) − 5241𝜃2(1 − 𝜌)2 − 65𝜃3(1 − 𝜌)3) < 0. The above inequality follows from 0 ≤ 𝜌 ≤ 1 and 0 < 𝜃 < 1. This implies that 

the slope of the first derivative of 𝑊𝛿  with respect to 𝛿 is always negative. 

Differentiating 𝑊𝛿  with respect to 𝛿 and then observing its sign at 𝛿 = 1 yields 
∂𝑊𝛿

∂𝛿
|𝛿=1 = 10𝜃(1 − 𝜌)(34796700 + 1204740𝜃(1 − 𝜌) −

114788𝜃2(1 − 𝜌)2 − 6402𝜃3(1 − 𝜌)3 − 65𝜃4(1 − 𝜌)4) > 0. The above inequality is always positive as the last three terms in the bracket 

which are negative are significantly smaller than the positive term. Further, these negative terms are also multiplied by our parameters which 

further make them less negative as 0 ≤ 𝜌 ≤ 1 and 0 < 𝜃 < 1. It remains to show that at 𝛿 = 0 we find 𝑊𝛿 > 0 which is given as 𝑊𝛿|𝛿=0 =
339221250 − 289396350𝜃(1 − 𝜌) − 30791250𝜃2(1 − 𝜌)2 + 1102668𝜃3(1 − 𝜌)3 + 229944𝜃4(1 − 𝜌)4 + 5200𝜃5(1 − 𝜌)5. Note 

that there are only two terms that negatively influence the above expression, and these are significantly smaller than the positive terms. As 𝑊𝛿  is 

always rising in 𝛿, we then confirm that 𝑊𝛿  is unambiguously positive for any 𝛿 ∈ [0,1].  

To show that 𝑊𝜌>0. differentiate 𝑊𝜌 with respect to 𝛿 four times, which yields 
∂4𝑊𝜌

∂𝛿4
= 72𝜃3(1 − 𝜌)3(221972 + 𝜃(1 − 𝜌)(33836 −

25965𝛿)) > 0. The above inequality follows directly from 0 ≤ 𝜌 ≤ 1, 0 ≤ 𝛿 ≤ 1 and 0 < 𝜃 < 1. Next, differentiating 𝑊𝜌 with respect to 𝛿 

thrice and considering its sign at 𝛿 = 1 yields 
∂3𝑊𝛿

∂𝛿3
|𝛿=1 = −18𝜃

2(1 − 𝜌)2(2101050 + 34982𝜃(1 − 𝜌) − 3287𝜃2(1 − 𝜌)2) < 0. The 

above inequality follows from 0 ≤ 𝜌 ≤ 1 and 0 < 𝜃 < 1. Differentiating 𝑊𝜌 with respect to 𝛿 twice and considering its sign at 𝛿 = 1, we 

observe 
∂2𝑊𝜌

∂𝛿2
|𝛿=1 = 30𝜃(1 − 𝜌)(11598900 + 82800𝜃(1 − 𝜌) − 63553𝜃

2(1 − 𝜌)2 − 1933𝜃3(1 − 𝜌)3) > 0. The above inequality 

follows from 0 ≤ 𝜌 ≤ 1 and 0 < 𝜃 < 1. This implies that the slope of the first derivative of 𝑊𝜌 with respect to 𝛿 is always positive and 𝑊𝜌 is 

convex in 𝛿. As 𝑊𝜌 is convex, we derive 𝛿𝑚𝑖𝑛 as the value of 𝛿 that minimizes 𝑊𝜌. Substituting 𝛿 = 𝛿𝑚𝑖𝑛, into 𝑊𝜌, we find that the minimum 

value of 𝑊𝜌 is always positive. This confirms that 𝑊𝜌 > 0 for all 0 ≤ 𝜌 ≤ 1, 0 ≤ 𝛿 ≤ 1 and 0 < 𝜃 < 1. 
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Appendix B 

Microfoundation of the Demand in the Baseline Model 

Consumer demand in Market A: Consumers have a basic valuation 𝑟 with the support [−2,1] which follows the Uniform distribution, i.e., 

𝑟 ∼ 𝒰[−2,1].17 The utility of a consumer of type 𝑟 in Market 𝐴 that buys the service of Platform 1 is given as 𝑈𝐴(𝑟) = 𝑟 + 𝑣𝐴 − 𝑃𝐴, where 

𝑣𝐴 is the value associated with innovation effort of Platform 1 in Market 𝐴, and 𝑃𝐴 is the price of the service. Consumers employ the services 

of the Platform 1 in Market 𝐴 only when they obtain positive utility from doing so.18 This condition pins down the demand for the Platform 

1’s service in Market 𝐴 as 𝑈𝐴 ≥ 0 ⟹ 𝑟 > 𝑟̂𝐴(𝑃𝐴, 𝑣𝐴) ≜ 𝑃𝐴 − 𝑣𝐴. Thus, the mass of consumers affiliating with the service of Platform 1 in 

Market 𝐴 is 𝑞𝐴 ≜ 1 −
(𝑟̂𝐴(𝑃𝐴,𝑣𝐴)+2)

3
=
1+𝑣𝐴−𝑃𝐴

3
. Rearranging yields: 𝑃𝐴 = 1 + 𝑣𝐴 − 3𝑞𝐴. Observe that inverse demand in Market 𝐴 is rising 

as the value of the service offered by Platform 1 rises and is downward sloping in 𝑞𝐴. 

Consumer demand in Market B: In Market 𝐵, as in Market 𝐴, we model consumers as having a basic valuation 𝑟 with the support [−2,1] 
which follows the uniform distribution, i.e., 𝑟 ∼ 𝒰[−2,1]. Thus, the utility of a consumer of type 𝑟 that buys from Platform 1 or from Platform 

2 is given as 𝑈1(𝑟) = 𝑟 + 𝑣1 +𝛹1 − 𝑃1 and 𝑈2(𝑟) = 𝑟 + 𝑣2 +𝛹2 − 𝑃2. where 𝑣𝑖, 𝛹𝑖 and 𝑃𝑖 for 𝑖 ∈ {1,2} are the values associated with 

innovation efforts, data cross-use levels and price of each platform’s service in the Market 𝐵. Consumers will buy the service of the platform 

that provides them the highest net utility. Under the above specification, platforms 1 and 2 will have positive demand only if quality-adjusted 

price at each platform 𝛷 ≜ 𝑃1 − 𝑣1 −𝛹1 = 𝑃2 − 𝑣2 −𝛹2 is identical implying that the “no arbitrage” condition holds.19 Furthermore, we 

assume the value of a consumer’s outside option is zero, such that consumers with 𝑈𝑖 < 0 will not choose any platform. This implies total 

demand is constituted only by those consumers for whom 𝑟 > 𝛷.20 Hence, total demand for the service in the market is 𝑞1 + 𝑞2 ≜ 1 −
(𝛷+2)

3
, 

being the total demand in Market 𝐵. Rearranging and inverting the above total demand for each platform 𝑖 yields the following inverse 

demand expression at the two platforms as 𝑃1(𝑣1, 𝛹1, 𝑞1, 𝑞2) ≜ 1 + 𝑣1 +𝛹1 − 3(𝑞1 + 𝑞2), 𝑃2(𝑣2, 𝛹2, 𝑞1, 𝑞2) ≜ 1 + 𝑣2 +𝛹2 − 3(𝑞1 + 𝑞2). 

with 
∂𝑃𝑖

∂𝑞𝑗
< 0 for any 𝑗 ∈ {1,2}, 

∂𝑃𝑖

∂𝑣𝑖
≥ 0. 

 
17 As in Katz and Shapiro (1985), the support also includes negative basic valuation, as some consumers may not use the service, even at a zero price, unless 

the service quality exceeds a certain threshold. This support assures that there is no corner solution and that the axioms of probability are satisfied when 
platforms innovate in either market. 
18 Note that we assume that the outside option of consumers provides zero utility. This assumption does not affect our results as any positive (and small enough) 

but fixed outside option is sufficient to provide qualitatively similar results. 
19 Any consumer of type 𝑟 should be indifferent between buying from 𝑅1 or 𝑅2 i.e., 𝑈1(𝑟) = 𝑈2(𝑟). This gives us the desired no arbitrage condition. 
20 We obtain this condition from the inequality 𝑈𝑖(𝑟) ≥ 0 for both platforms. 
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Appendix C  

Alternative Timing 

Here we present a variation of our model where the strategic output decisions in the two markets occur sequentially. Specifically, we assume 

that decisions are first made with respect to the (primary) Market 𝐴 and then with respect to the (secondary) Market 𝐵. The timing is as 

follows:  

Stage 1: Platforms choose their level of innovation 𝑣𝐴, 𝑣1, 𝑣2.  

Stage 2: Platform Firm 1 sets demand levels in Market 𝐴 𝑞𝐴. Stage 3: Platforms 1 and 2 choose their demand levels in Market 𝐵. The demand 

and profits are realized. 

In Stage 3, platforms determine the level of demands in Market 𝐵 to maximize profits given demand in Market 𝐴. Platforms 1 and 2 

respectively choose 𝑞1 and 𝑞2 in Market 𝐵 to maximize profits. Taking the appropriate first order conditions and solving yields the 

equilibrium demand in Market 𝐵 as 𝑞1(𝑣1, 𝑣2, 𝑞𝐴) =
1+2𝑣1−𝑣2+𝜃𝑞𝐴(2−𝛿)(1−𝜌)

9
, 𝑞2(𝑣2, 𝑣1, 𝑞𝐴) =

1−𝑣1+2𝑣2−𝜃𝑞𝐴(1−2𝛿)(1−𝜌)

9
, with 𝑞1 + 𝑞2 =

2+𝑣1+𝑣2+𝜃𝑞𝐴(1−𝜌)(1+𝛿)

9
. Substituting these demands in profit of the two platforms yields 𝛱1 = 𝑃𝐴𝑞𝐴 − 𝐼(𝑣𝐴) + 𝑃1(𝑣1, 𝛹1, 𝑞1, 𝑞2)𝑞1 − 𝐼(𝑣1), 

𝛱2 = 𝑃2(𝑣2, 𝛹2, 𝑞1, 𝑞2)𝑞1 − 𝐼(𝑣2). 
In Stage 2, Platform 1 sets the demand level in Market 𝐴 to maximize profits. Differentiating the profit of Platform 1 with respect to 𝑞𝐴 and 

solving yields the optimal demand level as 𝑞𝐴 =
27(1+𝑣𝐴)+2𝜃(2−𝛿)(1−𝜌)(1+2𝑣1−𝑣2)

(162−2𝜃2(2−𝛿)2(1−𝜌)2)
. Substituting this optimal demand level in Market 𝐴 into 

the inverse demand of Platform 1 in Market 𝐴 yields 𝑃𝐴(𝑣𝐴, 𝑣1, 𝑣2) = 1 + 𝑣𝐴 −
3(27(1+𝑣𝐴)+2(1+2𝑣1−𝑣2)𝜃(2−𝛿)(1−𝜌)))

(162−2𝜃2(2−𝛿)2(1−𝜌)2)
. Substituting this optimal 

demand level in Market 𝐴 into the demands of Platform 1 and Platform 2 in Market 𝐵 yields demands as 𝑞1(𝑣1, 𝑣2, 𝑣𝐴), 𝑞2(𝑣2, 𝑣1, 𝑣𝐴). The 

associated inverse demands in Market 𝐵 are 𝑃1(𝑣1, 𝑣2, 𝑣𝐴) and 𝑃2(𝑣2, 𝑣1, 𝑣𝐴). In Stage 1, each platform sets innovation effort levels to 

maximize their own profits. The profit of Platform 1 and 2 as function of innovation levels are given as 𝛱1(𝑣1, 𝑣2, 𝑣𝐴) = 𝑃𝐴𝑞𝐴 − 𝐼(𝑣𝐴) +
𝑃1𝑞1 − 𝐼(𝑣1) and 𝛱2(𝑣2, 𝑣1, 𝑣𝐴) = 𝑃2𝑞2 − 𝐼(𝑣2). Differentiating the profit of Platform 1 with respect to 𝑣1 and 𝑣𝐴 and the profit of Platform 

2 with respect to 𝑣2 and solving simultaneously, we obtain the equilibrium innovation effort levels as follows: 

𝑣1
⋆ =

4(675 + 27θ(14 − 9δ)(1 − ρ) − 5θ2(2 − δ)(4 − 3δ)(1 − ρ)2 − (2 − δ)θ3(1 − ρ)3(10 − 3δ(4 − δ)))

(15525 − (2 − 𝛿)𝜃2(1186 − 771𝛿)(1 − 𝜌)2 + 2(2 − 𝛿)2𝜃4(1 − 𝜌)4(10 − 3𝛿(4 − 𝛿))
, 

𝑣2
⋆ =

2(54 − (2 − 𝛿)𝜃(1 − 𝜌)2)(25 − 𝜃(9 − 14𝛿)(1 − 𝜌) − 2(2 − 𝛿)(1 − 𝛿)𝜃2(1 − 𝜌)2)

(15525 − (2 − 𝛿)𝜃2(1186 − 771𝛿)(1 − 𝜌)2 + 2(2 − 𝛿)2𝜃4(1 − 𝜌)4(10 − 3𝛿(4 − 𝛿))
, and  

𝑣𝐴
⋆ =

3105 + 𝜃(2 − 𝛿)(1 − 𝜌)(270 − 𝜃(1 − 𝜌)(86 − 57𝛿) − 2𝜃2(2 − 𝛿)(4 − 3𝛿)(1 − 𝜌)2

(15525 − (2 − 𝛿)𝜃2(1186 − 771𝛿)(1 − 𝜌)2 + 2(2 − 𝛿)2𝜃4(1 − 𝜌)4(10 − 3𝛿(4 − 𝛿))
. 

Substituting these equilibrium values into the profit functions yields the equilibrium profit obtained by each platform as 𝛱1
⋆ ≜ 𝛱1(𝑣1

⋆, 𝑣2
⋆, 𝑣𝐴

⋆), 

𝛱2
⋆ ≜ 𝛱1(𝑣2

⋆, 𝑣1
⋆, 𝑣𝐴

⋆). The consumer surplus in Markets 𝐴 and 𝐵 is respectively given by 𝐶𝑆𝐴 =
3(𝑞𝐴

⋆ )2

2
 and 𝐶𝑆𝐵 =

3(𝑞1
⋆+𝑞2

⋆)2

2
. The total welfare 

is defined as the sum of the platforms’ profits and total consumer surplus and given as 𝑊(𝜌, 𝛿) = 𝐶𝑆𝐴 + 𝐶𝑆𝐵 + 𝛱1
⋆ + 𝛱2

⋆. Plotting the main 

results of our paper, we show that both consumer surplus and total welfare can be lower under regulation than without regulation, and yield 

qualitatively the same results as in the base model (compare Figure C1 to Figure 2). 
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(a) Consumer Surplus                                                              (b) Total Welfare 

Note: Region R1: Higher CS with regulation, R2: Lower CS with regulation, R3: Lower CS with regulation (but higher CS in Market B). 
Figures derived for θ = 1/10. 

Figure C1. The Impact of Various Degrees of Data Siloing Regulation (ρ > 0) and Data Sharing Regulation 
(δ > 0) in Comparison to No Regulation (ρ = δ = 0)  
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Appendix D  

Personalized Data Cross-Use 

In this extension, we show that our results hold when platforms interact with the same consumers in both markets. Collecting data in Market 

𝐴 allows Platform 1 to offer better value for services in Market 𝐵 through personalization. Contrary to the base model, we now assume that 

Markets 𝐴 and 𝐵 are populated by the same set of consumers and that their total mass is normalized to one. As in the base model, consumers 

in each market demand at most one unit of the service. Consumers in our setting are modeled as independently and identically distributed 

(i.i.d.) along two dimensions on the unit interval—i.e., (1) consumers’ relative preference for services of Platform 2 over 1 in Market 𝐵 

denoted by 𝑋, and (2) consumers’ privacy cost 𝑌 when consuming Service A. Consumers’ preference for services in Market 𝐵 denoted by 𝑋 

is distributed according to a cumulative distribution function 𝐹 with density 𝑓. Along the dimension of privacy costs 𝑌 consumers are 

distributed according to the cumulative distribution function 𝐺 with density 𝑔. Since consumers are i.i.d. across these two dimensions, the 

joint distribution can be written as 𝑃(𝑋 ≤ 𝑥, 𝑌 ≤ 𝑦) = 𝐹(𝑥)𝐺(𝑦) with density being 𝑓(𝑥)𝑔(𝑦). For the purposes of this extension, we impose 

the following restrictions. 

Assumption 1: We assume that the distributions 𝐹 and 𝐺 follow a Uniform distribution—i.e., 𝐹 ∼ 𝒰[0,1] and 𝐺 ∼ 𝒰[0,1]. 

In Market 𝐴, the utility of consumer of type 𝑌, who buys the service, is 𝑈𝐴(𝑌, 𝑣𝐴, 𝑝𝐴) = 𝑣 + 𝑣𝐴 − 𝑝𝐴 − 𝑌. Consumers employ the services 

of the Platform 1 in Market 𝐴 only when they obtain positive utility from doing so which yields 𝑈𝐴 ≥ 0 ⟹ 𝑌 ≤ 𝑌𝐴(𝑣𝐴, 𝑝𝐴) ≜ 𝑣 + 𝑣𝐴 − 𝑝𝐴. 
In Market 𝐵, we adopt the Hotelling model of competition (Hotelling, 1929). Platforms 1 and 2 are located at the end points of the unit 

interval at coordinates 0 and 1, respectively, and compete by setting prices. Platform 𝑖’s price is 𝑝𝑖 (𝑖 = 1,2). A consumer denoted by its 

type 𝑋 ∈ [0,1] that buys from Platform 1 in Market 𝐴 and in Market 𝐵 benefits from personalization in Market 𝐵 and its utility is denoted as 

𝑈1
𝑆(𝑋, 𝑝1). Instead when a consumer does not buy from Platform 1 in Market 𝐴, there is no data collected by Platform 1 and thus also no 

personalization benefits. The utility of these consumers is given as 𝑈1
𝑁𝑆(𝑋, 𝑝1). The utilities of these two types of consumers that purchase 

from Platform 1 in Market 𝐵 are 𝑈1
𝑆(𝑋, 𝑝1) = 𝑣1 + (1 − 𝜌)𝜃 − 𝑝1 − 𝑡𝑋, 𝑈1

𝑁𝑆(𝑋, 𝑝1) = 𝑣1 − 𝑝1 − 𝑡𝑋. Here, (1 − 𝜌)𝜃 is the value of (cross-

market) personalization that Platform 1 can offer consumers whose data it has collected in Market 𝐴 given data siloing regulation 𝜌, 𝑡 is the 

transportation cost and 𝑋 is consumers’ preference mismatch.21 

Similarly, a consumer of type 𝑋 ∈ [0,1] that buys from Platform 1 in Market 𝐴 and from Platform 2 in Market 𝐵 may benefit under the 

regulation 𝜌 and 𝛿 and its utility is denoted as 𝑈2
𝑆(𝑋, 𝑝2) = 𝑣2 + (1 − 𝜌)𝛿𝜃 − 𝑝2 − 𝑡(1 − 𝑋). This is because Platform 1 has data regarding 

this consumer’s preference and may be mandated to share this data with Platform 2. Here, (1 − 𝜌)𝛿𝜃 is the value of personalization that 

Platform 2 can offer consumers, given data cross-use regulation 𝜌 and 𝛿, whose data it has collected in Market 𝐴 given data siloing regulation 

𝜌. Instead, when a consumer does not buy from Platform 1 in Market 𝐴, there is no data collected by Platform 1 and thus also no 

personalization benefits. The utilities of this consumer type is 𝑈2
𝑁𝑆(𝑋, 𝑝2) = 𝑣2 − 𝑝2 − 𝑡(1 − 𝑋). 

Demand in Market 𝐵 for Platform 1 is then characterized by the following two indifference conditions. 𝑈1
𝑆 ≥ 𝑈2

𝑆 ⟹ 𝑋 ≤ 𝑋𝑆 ≜
1

2
+

𝑣1−𝑣2−(𝑝1−𝑝2)+𝛺

2𝑡
 where 𝛺 ≜ 𝜃(1 − 𝜌)(1 − 𝛿) and 𝑈1

𝑁𝑆 ≥ 𝑈2
𝑁𝑆 ⟹ 𝑋 ≤ 𝑋𝑁𝑆 ≜

1

2
+
𝑣1−𝑣2−(𝑝1−𝑝2)

2𝑡
. Since demands are i.i.d., the mass of 

consumers who buy Service A and those who buy from Platform 1 and those who buy from Platform 2 in Market 𝐵 is given as 𝐷1
𝑆 =

𝐹(𝑋𝑆)𝐺(𝑌𝐴) and 𝐷2
𝑆 = (1 − 𝐹(𝑋𝑆))𝐺(𝑌𝐴). Among the set of consumers who do not buy Service A, the mass of consumers in Market 𝐵 who 

buy from Platform 1 and those who buy from Platform 2 is given as 𝐷1
𝑁𝑆 = 𝐹(𝑋𝑁𝑆)(1 − 𝐺(𝑌𝐴)) and 𝐷2

𝑁𝑆 = (1 − 𝐹(𝑋𝑁𝑆))(1 − 𝐺(𝑌𝐴)). 

Further, the total mass of consumers who buy Service A denoted by 𝐷𝐴. Figure E2 illustrates the four demand segments. 

The profit of Platform 1 and Platform 2 are respectively given by 𝛱1 ≜ 𝑝𝐴𝐷𝐴 − 𝐼(𝑣𝐴) + 𝑝1(𝐷1
𝑆 + 𝐷1

𝑁𝑆) − 𝐼(𝑣1) and 𝛱2 ≜ 𝑝2(𝐷2
𝑆 +𝐷2

𝑁𝑆) −
𝐼(𝑣2). The timing of the game is as follows:  

Stage 1: Platforms choose their level of innovation 𝑣𝐴, 𝑣1, 𝑣2.  

Stage 2: Platforms set their prices 𝑝𝐴, 𝑝1, 𝑝2.  

Stage 3: Consumers in Markets A and B buy and profits are realized. The equilibrium concept we employ is subgame perfect Nash 

equilibrium.  

 
21 Here, data is like a consumer value enhancing input that Platform 1 owns exclusively and may be obliged by regulation to share with its rival. For details on 

how a competing platform may share exclusive inputs with rivals see Carroni et al. (2024).  
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In Stage 2, platforms determine simultaneously the price for their service in each market. Platform 1 chooses the price level 𝑝𝐴, in Market 𝐴 

and the price level 𝑝1 in Market 𝐵 to maximize profits, while Platform 2 chooses its price 𝑝2. Differentiating the profit of Platform 1 with 

respect to 𝑝𝐴 and 𝑝1 and the profit of Platform 2 with respect to 𝑝2 and solving simultaneously, we get the equilibrium price levels in the 

markets as a function of innovation levels given as 𝑝1 =
2𝑡(6𝑡+2(𝑣1−𝑣2)+𝛺(𝑣+𝑣𝐴))

12𝑡−𝛺2
, 𝑝2 =

2𝑡(2(3𝑡−(𝑣1−𝑣2))−𝛺(𝛺+𝑣+𝑣𝐴))

12𝑡−𝛺2
 and 𝑝𝐴 =

(𝑣+𝑣𝐴)(6𝑡−𝛺
2)−(3𝑡+𝑣1−𝑣2)𝛺

12𝑡−𝛺2
. Substituting these prices into the demands, we get demands as function of investment as 𝐷1

𝑆, 𝐷2
𝑆, 𝐷1

𝑁𝑆 , 𝐷2
𝑁𝑆, and 

𝐷𝐴. 
In Stage 1, each platform sets innovation levels to maximize profits. Differentiating the profit of Platform 1 with respect to 𝑣1 and 𝑣𝐴 and the 

profit of Platform 2 with respect to 𝑣2 and solving simultaneously, we obtain the equilibrium innovation effort levels denoted as 𝑣𝐴
⋆, 𝑣1

⋆ and 

𝑣2
⋆ and are given by 𝑣𝐴

⋆ =
𝛺𝑡(8𝑡−𝛺2)(36𝑡−3𝛺2−8)+𝑣(12𝑡−𝛺2)(8𝑡(9𝑡−2)−𝛺2(8𝑡−1))

(12𝑡−𝛺2)(8𝑡(9𝑡−2)−𝛺2(16𝑡−1)+𝛺4)
, 𝑣1

⋆ =
(8𝑡−𝛺2)(36𝑡2−𝑣𝛺3−𝑡(8−3𝛺(4𝑣−𝛺)))

(12𝑡−𝛺2)(8𝑡(9𝑡−2)−𝛺2(16𝑡−1)+𝛺4)
 and 𝑣2

⋆ =

8𝑡(4𝑡(9𝑡−2)−12𝛺𝑡𝑣+𝛺3𝑣−𝛺2(13𝑡−1)+𝛺4)

(12𝑡−𝛺2)(8𝑡(9𝑡−2)−𝛺2(16𝑡−1)+𝛺4)
. 

The equilibrium price of each platform in Market 𝐵 and in Market 𝐴 are given by 𝑝𝐴
⋆ = 𝑝𝐴(𝑣𝐴

⋆, 𝑣1
⋆, 𝑣2

⋆), 𝑝1
⋆ = 𝑝1(𝑣1

⋆, 𝑣2
⋆, 𝑣𝐴

⋆), and 𝑝2
⋆ =

𝑝2(𝑣2
⋆, 𝑣1

⋆, 𝑣𝐴
⋆). Substituting these prices and innovation effort levels, the equilibrium profit obtained by each platform is 𝛱1

⋆ ≜ 𝛱1(𝑣1
⋆, 𝑣2

⋆, 𝑣𝐴
⋆) 

and 𝛱2
⋆ ≜ 𝛱1(𝑣2

⋆, 𝑣1
⋆, 𝑣𝐴

⋆). The consumer surplus in Market 𝐴 is given by 𝐶𝑆𝐴 = ∫ (𝑣 + 𝑣𝐴
⋆ − 𝑝𝐴

⋆ − 𝑌)
𝑌𝐴
⋆

0
𝑑𝑌 where 𝑌𝐴

⋆ ≜ 𝑣 + 𝑣𝐴
⋆ − 𝑝𝐴

⋆  and 𝛺 =

𝜃(1 − 𝛿)(1 − 𝜌). Similarly, the consumer surplus in Market 𝐵 is 𝐶𝑆𝐵 = ∫ ∫ (𝑣1
⋆ + (1 − 𝜌)𝜃 − 𝑝1

⋆ − 𝑡𝑋)
𝑌𝐴
⋆

0

𝑋𝑆
⋆

0
𝑑𝑌𝑑𝑋 + ∫ ∫ (𝑣 + 𝑣1

⋆ −
1

𝑌𝐴
⋆

𝑋𝑁𝑆
⋆

0

𝑝1
⋆ − 𝑡𝑋)𝑑𝑌𝑑𝑋 + ∫ ∫ (𝑣2

⋆ + (1 − 𝜌)𝛿𝜃 − 𝑝2
⋆ − 𝑡(1 − 𝑋))

𝑌𝐴
⋆

0

1

𝑋𝑆
⋆ 𝑑𝑌𝑑𝑋 + ∫ ∫ (𝑣2

⋆ − 𝑝2
⋆ − 𝑡(1 − 𝑋))

1

𝑌𝐴
⋆

1

𝑋𝑁𝑆
⋆ 𝑑𝑌𝑑𝑋, where 𝑋𝑆

⋆ =
1

2
+

𝑣1
⋆−𝑣2

⋆−(𝑝1
⋆−𝑝2

⋆)+𝛺

2𝑡
, 𝑋𝑁𝑆

⋆ =
1

2
+
𝑣1
⋆−𝑣2

⋆−(𝑝1
⋆−𝑝2

⋆)

2𝑡
. The total welfare is defined as the sum of the platforms’ profits and total consumer surplus and 

given as 𝑊(𝜌, 𝛿) = 𝐶𝑆𝐴 + 𝐶𝑆𝐵 + 𝛱1
⋆ + 𝛱2

⋆. Figure D1 visualizes the main results of this extension with respect to consumer surplus and total 

surplus. We find qualitatively similar results as in the base model (compare Figure D1 to Figure 2).

        

(a) Consumer Surplus                                                             (b) Total Welfare 

Note: Region R1: Higher CS with regulation, R2: Lower CS with regulation, R3: Lower CS with regulation (but higher CS in Market B). 
Figures derived for θ = 1/10, t = 1,v = 0.75, and Δ = 0.2 

Figure D1. The Impact of Various Degrees of Data Siloing Regulation (𝝆 > 𝟎) and Data Sharing Regulation 

(𝜹 > 𝟎) in Comparison to No Regulation (𝝆 = 𝛅 = 𝟎) with Personalized Data Cross-Use  
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Appendix E  

Different Sizes of the Two Markets 

We now consider how the relative size of the two markets impacts our result. To this end, we normalize the total mass in the two markets to 

one and let the size of Market 𝐴 be 𝛼 ∈ (0,1) and the size of Market 𝐵 be (1 − 𝛼). This specification implies that the profit from Market 𝐴 

becomes more valuable for Platform 1 as 𝛼 increases. Incorporating this difference in market size in the profit of Platform 1 and Platform 2 

yields 𝛱1 ≜ 𝛼𝑃𝐴𝑞𝐴 − 𝐼(𝑣𝐴) + (1 − 𝛼)𝑃1𝑞1 − 𝐼(𝑣1) and 𝛱2 ≜ (1 − 𝛼)𝑃2𝑞2 − 𝐼(𝑣2). 

In Stage 3, platforms determine simultaneously the level of demands they seek to achieve in each of the two markets to maximize profits 

considering the belief of consumers regarding the demand in Market 𝐴. Notice that given innovation effort in Stage 1, the demand levels of 

each platform do not change under the timing as specified in the base model. This is because in Stage 2, innovation levels are given and the 

choice of demands in the different markets is simultaneous. The equilibrium demand in market 𝐵 and in Market 𝐴 as function of innovation 

effort levels are as in the base model (see (sec (4)). The profit of Platform 1 and 2 as a function of innovation effort levels are given as 𝛱1 ≜
𝛼𝑃𝐴𝑞𝐴 + (1 − 𝛼)𝑃1𝑞1 − 𝐼(𝑣𝐴) − 𝐼(𝑣1) and 𝛱2 ≜ (1 − 𝛼)𝑃2𝑞2 − 𝐼(𝑣2). 

In Stage 1, each platform sets innovation effort levels to maximize profits as presented above. Differentiating the profit of Platform 1 with 

respect to 𝑣1 and 𝑣𝐴 and the profit of Platform 2 with respect to 𝑣2 and solving simultaneously the first order conditions, we obtain the 

equilibrium innovation effort levels denoted as 𝑣𝐴
⋆, 𝑣1

⋆ and 𝑣2
⋆ as follows: 

𝑣𝐴
⋆ =

(48α3 + 336α2 + 345α + (2 − δ)θ(1 − α)(1 − ρ)(30 + 4α(6 + θ(1 − ρ)) + θ(14 − 9δ)(1 − ρ)))

𝑍̂
, 

𝑣1
⋆ =

12(1 − α)(30 − 4α2 + α(19 + 4θ(1 − ρ)) + θ(14 − 9δ)(1 − ρ))

𝑍̂
, and  

𝑣2
⋆ =

4(1 − α)(90 − 12\alpha2 − 3θ(9 − 14δ)(1 − ρ) − θ^2(2 − δ)(1 − δ)(1 − ρ)^2 +

α(57 + θ(1 − ρ)(2θ(1 − ρ) + δ2θ(1 − ρ) + 3δ(4 − θ(1 − ρ)))))

𝑍̂
, 

where 𝑍̂ = (2070 − 48𝛼3 − 4𝛼2(12 − (2 − 𝛿)𝜃2(1 − 𝜌)2) + 𝛼(1671 + 𝜃2(2 − 𝛿)(10 − 9𝛿)(1 − 𝜌)2) − 𝜃2(2 − 𝛿)(14 − 9𝛿)(1 −
𝜌)2). 

Substituting these equilibrium innovation levels into the equilibrium market prices in Market 𝐵 and in Market 𝐴 yields 𝑃𝐴
⋆ ≜ 𝑃𝐴(𝑣𝐴

⋆) 𝑃1
⋆ ≜

𝑃1(𝑣1
⋆, 𝑣2

⋆, 𝑣𝐴
⋆) and 𝑃2

⋆ ≜ 𝑃2(𝑣2
⋆, 𝑣1

⋆, 𝑣𝐴
⋆). 

Welfare: The consumer surplus in Market 𝐴 and 𝐵 is as in the base model and given by 𝐶𝑆𝐴 =
3(𝑞𝐴

⋆ )2

2
 and 𝐶𝑆𝐵 =

3(𝑞1
⋆+𝑞2

⋆)2

2
. Total consumer 

surplus depends on the relative market sizes of each market and is given as 𝐶𝑆𝑇 = 𝛼𝐶𝑆𝐴 + (1 − 𝛼)𝐶𝑆𝐵. Figure E1 visualizes the impact of 

different market sizes with respect to consumer surplus. We find qualitatively similar results as in the base model (compare Figure E1 with 

Figure 2). It can also be observed that 𝛼 affects mainly the size of Region R3 in which the regulation has an opposing effect on Market 𝐴 and 

Market 𝐵. However, our main policy implications are not affected by this. 

The total welfare is defined as the sum of the platforms’ profits and total consumer surplus and given as 𝑊(𝜌, 𝛿) = 𝐶𝑆𝑇 + 𝛱1
⋆ + 𝛱2

⋆.  

Figure E2 visualizes the impact of different market sizes with respect to total welfare, which shows qualitatively similar results as in the base 

model (compare Figure E2 with Figure 2).
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(a) Consumer Surplus for 𝜶 = 𝟎. 𝟎𝟏 (b) Consumer Surplus for 𝜶 = 𝟎. 𝟐𝟓 

 

 

(c) Consumer Surplus for 𝜶 = 𝟎. 𝟓 (d) Consumer Surplus for 𝜶 = 𝟎. 𝟕𝟓 

Note: Region R1: Higher CS with regulation, R2: Lower CS with regulation, R3: Lower CS with regulation (but higher CS in Market B). 
Figures derived for θ = 1/10 

Figure E1. The Impact of Various Degrees of Data Siloing Regulation (ρ > 0) and Data Sharing Regulation 
(δ > 0) in Comparison to No Regulation (ρ = δ = 0) 
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(a) Total Welfare for 𝜶 = 𝟎. 𝟎𝟏 (b) Total Welfare for 𝜶 = 𝟎. 𝟐𝟓 

 

 

(c) Total Welfare for 𝜶 = 𝟎. 𝟓 (d) Total Welfare for 𝜶 = 𝟎. 𝟕𝟓 

Note: Region R1: Higher CS with regulation, R2: Lower CS with regulation, R3: Lower CS with regulation (but higher CS in Market B). 
Figures derived for θ =1/10 

Figure E2. The Impact of Various Degrees of Data Siloing Regulation (ρ > 0) and Data Sharing Regulation 
(δ > 0) in Comparison to No Regulation (ρ = δ = 0) 

 

 

 



Krämer & Shekhar / Regulating Digital Platform Ecosystems Through Data Sharing and Data Siloing 

MIS Quarterly Vol. 49 No. 1 / March 2025 153 

 

Appendix F  

General Functional Form for Data Cross-Use Benefit 

We show that, under the following reasonable assumption on 𝛹𝑖, our results hold also under more general function forms for the data cross-

use benefit 𝛹𝑖. 

The impact of data cross-use on demand 𝛹𝑖(⋅) exhibits the following properties: 

(a) The platform that has immediate access to the data can use at least as much of the data as the platform with whom data is shared. 

As more data becomes available, 𝛹𝑖 weakly increases, everything else being equal—i.e., 
∂𝛹1

∂𝑞𝐴
≥
∂𝛹2

∂𝑞𝐴
≥ 0 and 

∂𝛹1

∂𝜃
≥
∂𝛹2

∂𝜃
≥ 0. 

(b) As data siloing requirements become stricter, less data can be cross-used such that 𝛹𝑖 decreases, everything else being equal—i.e., 
∂𝛹1

∂𝜌
<
∂𝛹2

∂𝜌
< 0, 

∂2𝛹𝑖

∂𝜌 ∂𝑞𝐴
< 0, with strict data siloing implying 𝛹1(1, 𝜃𝑞𝐴) = 𝛹2(𝛿, 1, 𝜃𝑞𝐴) = 0. 

(c) As data sharing requirements become stricter, only 𝛹2 of the data receiving platform increases, while there is no direct impact on 

𝛹1 of the data providing platform—i.e., 
∂𝛹1

∂𝛿
= 0, 

∂𝛹2

∂𝛿
> 0, where 𝛹1(𝜌, 𝜃𝑞𝐴) > 𝛹2(𝛿, 𝜌, 𝜃𝑞𝐴) and 

∂2𝛹2

∂𝛿 ∂𝑞𝐴
> 0 while 

∂2𝛹1

∂𝛿 ∂𝑞𝐴
= 0, with 

strict data sharing (𝛿 = 1) implying 𝛹1(𝜌, 𝑞𝐴) = 𝛹2(1, 𝜌, 𝑞𝐴). 

Now, we present generalized versions of Lemma 1 and Proposition 1, which capture the main driving forces behind our (welfare) results and 

insights.  

Lemma 1’ (Impact of data cross-use regulation on demand): (a) A higher degree of data cross-use (𝜃) or a higher innovation level in 

Market 𝐴 (𝑣𝐴) always increases Platform 1’s demand in Market 𝐵, but increases Platform 2’s demand in Market 𝐵 only when coupled with 

a sufficient level of data sharing (𝛿 > 𝛿1). (b) More data siloing (larger 𝜌) leads to lower demand in Market 𝐵 for Platform 1 but reduces 

Platform 2’s demand in Market 𝐵 only when the level of data sharing is high (𝛿 > 𝛿2). (c) More data sharing (larger 𝛿) leads to lower 

demand for Platform 1 in Market 𝐵, but to a higher demand for Platform 2. (d) More data siloing reduces the total demand in Market 𝐵, 

whereas more data sharing increases the total demand in Market 𝐵.  

Proof of Lemma 1’: In Stage 3, the first order conditions are as presented in the main text. Solving this system of equation yields the demands 

in Markets 𝐴 and 𝐵 as a function of anticipated value from demand (𝛹𝑖) and innovation levels as follows: 𝑞𝐴(𝑣𝐴) =
1+𝑣𝐴

6
, 𝑞1(𝑣1, 𝑣2, 𝛹1, 𝛹2) =

1+2𝑣1−𝑣2+2𝛹1−𝛹2

9
 and 𝑞2(𝑣2, 𝑣1, 𝛹2, 𝛹2) =

1+2𝑣2−𝑣1+2𝛹2−𝛹1

9
. In equilibrium, consumers’ anticipated value must be correct 𝑞𝐴

𝑒 = 𝑞𝐴(𝑣𝐴) yields 

𝛹1(𝜌, 𝑣𝐴) and 𝛹2(𝛿, 𝜌, 𝑣𝐴). 

Comparative statics with respect to 𝑣𝐴 and 𝜃. Differentiating 𝑞1 with respect to 𝑣𝐴 yields (2
∂𝛹1

∂𝑞𝐴
𝑒 −

∂𝛹2

∂𝑞𝐴
𝑒)

∂𝑞𝐴

∂𝑣𝐴
≥ 0, and by the assumptions 

presented above, 
∂𝛹1

∂𝑞𝐴
𝑒 −

∂𝛹2

∂𝑞𝐴
𝑒 ≥ 0. Similarly, differentiating 𝑞1 with respect to 𝜃 yields 2

∂𝛹1

∂𝜃
−
∂𝛹2

∂𝜃
≥ 0. Thus, it follows that Platform 1’s 

demand always increases with an increase in 𝑣𝐴 or 𝜃. Instead, Platform 2 benefits from a higher 𝑣𝐴 or 𝜃 only under a sufficiently high degree 

of data cross-use for Platform 2, i.e., 𝛿 > 𝛿1. To see this, note that the demand of Platform 2 increases in 𝑣𝐴 when 2
∂𝛹2

∂𝑣𝐴
−
∂𝛹1

∂𝑣𝐴
> 0. To show 

this, we recall two properties from the assumptions presented above: (i) 
∂2𝛹2

∂𝑣𝐴 ∂𝛿
> 0 is increasing in 𝛿 while 

∂2𝛹1

∂𝑣𝐴 ∂𝛿
= 0; (ii) 𝛹2(𝛿 = 1, 𝜌, 𝑣𝐴) =

𝛹1(𝜌, 𝑣𝐴) and 𝛹2(𝛿 = 0, 𝜌, 𝑣𝐴) = 0. Noting that (2
∂𝛹2

∂𝑣𝐴
−
∂𝛹1

∂𝑣𝐴
) |𝛿=0 < 0 and (2

∂𝛹2

∂𝑣𝐴
−
∂𝛹1

∂𝑣𝐴
) |𝛿=1 > 0, by continuity there exists a cutoff 𝛿1 

such that when 𝛿 > 𝛿1, it must be that (2
∂𝛹2

∂𝑣𝐴
−
∂𝛹1

∂𝑣𝐴
) > 0 and otherwise (2

∂𝛹2

∂𝑣𝐴
−
∂𝛹1

∂𝑣𝐴
) < 0. Further, by the assumptions stated above, 𝛹2 is 

a function of 𝜃𝑞𝐴
𝑒 , and 𝑞𝐴

𝑒  is increasing in 𝑣𝐴. Hence, as 𝜃 > 0 and is multiplied with 𝑣𝐴, a similar analysis can be performed. 

Comparative statics with respect to 𝜌. Differentiating demands in Market 𝐵 with respect to 𝜌 yields 

𝑠𝑖𝑔𝑛 (
∂𝑞1
∂𝜌
) = 𝑠𝑖𝑔𝑛 (2

∂𝛹1
∂𝜌

−
∂𝛹2
∂𝜌
) < 0,  𝑠𝑖𝑔𝑛 (

∂𝑞2
∂𝜌
) = 𝑠𝑖𝑔𝑛 (2

∂𝛹2
∂𝜌

−
∂𝛹1
∂𝜌
) . 
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The first inequality as presented above is always negative as 
∂𝛹1

∂𝜌
≤
∂𝛹2

∂𝜌
< 0. The sign of the second inequality is more nuanced. As before, 

note that as 𝛿 increases, 
∂2𝛹2

∂𝜌∂𝛿
< 0. Recalling that at 𝛿 = 0, 𝛹2 = 0 which implies that 

∂𝑞2

∂𝜌
> 0. On the contrary, at 𝛿 = 1 it must be that 

𝛹2 = 𝛹1 implying 
∂𝑞2

∂𝜌
< 0. By continuity, there exists 𝛿2 such that for 𝛿 < 𝛿2, we have 

∂𝑞2

∂𝜌
> 0. 

Comparative statics with respect to 𝛿. Differentiating demands in Market 𝐵 with respect to 𝜌, note that 𝑠𝑖𝑔𝑛 (
∂𝑞1

∂𝛿
) = 𝑠𝑖𝑔𝑛 (−

∂𝛹2

∂𝛿
) < 0, and 

𝑠𝑖𝑔𝑛 (
∂𝑞2

∂𝛿
) = 𝑠𝑖𝑔𝑛 (2

∂𝛹2

∂𝛿
) > 0.22   

Proposition 1’ (Innovation): The innovation effort by Platform 1 in Market 𝐴 and 𝐵 is reduced with stricter data sharing (larger 𝛿) or with 

stricter data siloing (larger 𝜌). The innovation effort of Platform 2 always increases with data sharing but increases with data siloing only 

if the level of data sharing is low (𝛿 < 𝛿3).  

Proof of Proposition 1’: Solving the first order conditions presented in the main text simultaneously, we get innovation levels in Market 𝐵 

as a function of 𝑣𝐴 as follows 𝑣1(𝑣𝐴) ≜
4(5+14𝛹1−9𝛹2)

115
 and 𝑣2(𝑣𝐴) ≜

4(5+14𝛹2−9𝛹1)

115
. The comparative statics with respect to 𝑣𝐴 arises from: 

(i) 
∂𝛹1

∂𝑞𝐴
𝑒 ≥

∂𝛹2

∂𝑞𝐴
𝑒 ≥ 0 and 

∂𝑞𝐴

∂𝑣𝐴
> 0, and (ii) at 𝛿 = 0, 

∂𝛹1

∂𝑞𝐴
𝑒 > 0 and 

∂𝛹2

∂𝑞𝐴
𝑒 = 0, and at 𝛿 = 1, 

∂𝛹1

∂𝑞𝐴
𝑒 =

∂𝛹2

∂𝑞𝐴
𝑒 > 0. By continuity, 

∂𝑣1(𝑣𝐴)

∂𝑣𝐴
> 0 always holds. 

Comparative statics of 𝑣2(𝑣𝐴) with respect to 𝑣𝐴 is more nuanced. Specifically, there exists a critical level of data sharing denoted by 𝛿3 at 

which 
∂𝑣2(𝑣𝐴)

∂𝑣𝐴
|𝛿=𝛿3 = 0 and above which (𝛿 > 𝛿3) we have 

∂𝑣2(𝑣𝐴)

∂𝑣𝐴
> 0. Substituting 𝑣1(𝑣𝐴) and 𝑣2(𝑣𝐴) in the first order condition in the 

main text and solving characterizes the equilibrium innovation level 𝑣𝐴
⋆. The equilibrium innovation levels in Market 𝐵 are 𝑣1

⋆ = 𝑣1(𝑣𝐴
⋆) =

4(5+14𝛹1−9𝛹2)

115
, and 𝑣2

⋆ = 𝑣2(𝑣𝐴
⋆) =

4(5+14𝛹2−9𝛹1)

115
. Employing the implicit function theorem, we obtain the derivative of the equilibrium 

innovation level 𝑣𝐴
⋆ with respect to 𝜌 and 𝛿 as 

∂𝑣𝐴
⋆

∂𝜌
=
6𝐻

𝑆
(2

∂2𝛹1

∂𝑞𝐴
𝑒 ∂𝜌

−
∂2𝛹2

∂𝑞𝐴
𝑒 ∂𝜌
) < 0 and 

∂𝑣𝐴
⋆

∂𝛿
= −

6𝐻

𝑆
(
∂2𝛹2

∂𝑞𝐴
𝑒 ∂𝛿
) < 0, with (2

∂2𝛹1

∂𝑞𝐴
𝑒 ∂𝜌

−
∂2𝛹2

∂𝑞𝐴
𝑒 ∂𝜌
) < 0, 

(
∂2𝛹2

∂𝑞𝐴
𝑒 ∂𝛿
) > 0, 𝐻 = (5 + 14𝛹1 − 9𝛹2) > 0 and 𝑆 = 1725 − (2

∂𝛹1

∂𝑞𝐴
𝑒 −

∂𝛹2

∂𝑞𝐴
𝑒) (14

∂𝛹1

∂𝑞𝐴
𝑒 − 9

∂𝛹2

∂𝑞𝐴
𝑒) > 0. 

Next, we demonstrate that 𝑣1
⋆ falls in both 𝛿 and 𝜌. First, the total derivative of 𝛹1 with respect to 𝜌 and 𝛿 is given as 

𝑑𝛹1

𝑑𝜌
=
∂𝛹1

∂𝜌
+
∂𝛹1

∂𝑣𝐴

∂𝑣𝐴
⋆

∂𝜌
<

0, and 
𝑑𝛹1

𝑑𝛿
=
∂𝛹1

∂𝑣𝐴

∂𝑣𝐴
⋆

∂𝛿
< 0.23 Second, the total derivative of 𝛹2(𝛿, 𝜌, 𝑣𝐴

⋆) with respect to 𝜌 and 𝛿 is respectively given as 
𝑑𝛹2(𝛿,𝜌,𝑣𝐴

⋆ )

𝑑𝜌
=
∂𝛹2

∂𝜌
+

∂𝛹2

∂𝑣𝐴

∂𝑣𝐴
⋆

∂𝜌
< 0 and 

𝑑𝛹2(𝛿,𝜌,𝑣𝐴
⋆ )

𝑑𝛿
=
∂𝛹2

∂𝛿
+
∂𝛹2

∂𝑣𝐴

∂𝑣𝐴
⋆

∂𝛿
> 0. The second inequality must be positive because intuitively the direct positive effect of an 

increase in 𝛿 must always outweigh any indirect effect. Else, Platform 1 would have incentives to share data with Platform 2 to lower its data 

advantage, which is unreasonable. Differentiating 𝑣1
⋆ with respect to 𝜌 and 𝛿 yields 

∂𝑣1
⋆

∂𝜌
=

4

115
(14

𝑑𝛹1

𝑑𝜌
− 9

𝑑𝛹2(𝛿,𝜌,𝑣𝐴
⋆ )

𝑑𝜌
) < 0 and 

∂𝑣1
⋆

∂𝛿
=

4

115
(−9

𝑑𝛹2

𝑑𝛿
) < 0. Differentiating 𝑣2

⋆ with respect to 𝜌 and 𝛿 yields 
∂𝑣2

⋆

∂𝜌
=

4

115
(14

𝑑𝛹2

𝑑𝜌
− 9

𝑑𝛹1

𝑑𝜌
) and 

∂𝑣2
⋆

∂𝛿
=

4

115
(14

𝑑𝛹2

𝑑𝛿
− 9

𝑑𝛹1

𝑑𝛿
) > 0. The 

second inequality is unambiguously always positive and follows directly from the fact that 
𝑑𝛹2

𝑑𝛿
> 0 and that 

𝑑𝛹1

𝑑𝛿
< 0. However, the sign of 

∂𝑣2
⋆

∂𝜌
 depends on 𝛿. At 𝛿 = 0, we have that 

∂𝑣2
⋆

∂𝜌
> 0. Instead, for 𝛿 = 1, we observe that 

∂𝑣2
⋆

∂𝜌
< 0 as 𝛹1 = 𝛹2. In addition, it must be that 

∂2𝑣2
⋆

∂𝜌 ∂𝛿
<

0. This is because as the data sharing regulation gets stricter (as 𝛿 increases), increased data siloing reduces Platform 2’s marginal revenues 

as value from data cross-use is reduced. Suppose that instead if this inequality were positive, Platform 2 would prefer an increase in data 

siloing as the data sharing regulation gets stricter (as 𝛿 increases). However, this would not be reasonable, as the margin (and hence 

profitability) of Firm 2 increases with the demand-enhancing effect of data sharing, whereas data siloing only limits these benefits. This 

intuition holds under a wide range of functional forms for 𝛹𝑖. In sum, there exists a 𝛿3 such that 
∂𝑣2

⋆

∂𝜌
> 0 if and only if 𝛿 < 𝛿3 and 

∂𝑣2
⋆

∂𝜌
≤ 0 

when 𝛿 ≥ 𝛿3. 

 

 

 

 
22 The above two inequalities arise from 𝛹1 being a constant in 𝛿 while 𝛹2 is rising in 𝛿. 
23 The above inequalities follow directly from the assumptions on 𝛹𝑖 and that 𝑣𝐴

⋆ falls in both 𝜌 and 𝛿. 


