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Abstract 
Affective processes play an important role in 

determining human behavior in auctions. While 
previous research has shown that physiological 
measurements provide insights into these processes, it 
remains unclear which of the many features that can 
be computed from physiological data are particularly 
useful in predicting human behavior. Identifying these 
features is important for gaining a better 
understanding of affective processes in electronic 
auctions and for building biofeedback systems. In this 
study, we propose a new approach to identify 
physiological features for predicting auction 
behavior. We apply an Evolutionary Algorithm in 
combination with either the Multiple Linear 
Regression or Artificial Neural Network models to 
select physiological features and assess their 
predictive power. To test the approach, we use a 
unique dataset of participants’ auction decisions and 
their synchronously recorded electrocardiography 
data. Our results show that the approach is able to 
identify subsets of physiological features that 
consistently outperform other physiological features. 

1. Introduction  

The quality of economic decision-making, such as 
decisions in auctions, is not only dependent on the 
decision-maker’s knowledge of the domain and 

experience. An increasing number of studies have 
revealed the correlation of a decision-maker’s 

affective processes and the quality of decisions, where 
quality can be measured using various metrics such as 
accuracy, number of errors, or divergence from 
theoretically optimal behavior (e.g., [1]–[5]).

However, due to the unconscious nature of one’s 

own affective processes, it is especially difficult to be 
fully aware of one’s own current emotional state and 
to utilize this valuable information [6]. Driven by the 
autonomous nervous system (ANS), physiological 
responses to environmental factors are outside of one’s

conscious control and, therefore, they provide an 
unaltered insight into a decision-maker’s affective 
processes. Using training and decision support 
systems for actively increasing the awareness of one’s 

current state has been shown to improve and de-bias 
decision-making (e.g., [7]–[9]). Although unlocking 
access to a decision-maker’s emotional state and the 
information hidden within could also be of important 
interest at a team or corporate level–e.g., a financial 
firm putting together a trading team (i.e., trading floor) 
[10]–the implementation of this in a real-world 
information system (IS) and its integration in day-to-
day use is still a long way off. 

Even though the necessary tools (i.e., measurement 
devices and data analytic capabilities) for 
implementing such an IS have become ubiquitous 
during the past years, even for consumers [11], one 
particular problem remains: The immense variety of 
different measurements and their appropriateness to a 
given context. Derived from medical practice and 
research, every measurement of a human body’s 

physiological activity (such as electrocardiography 
(ECG), electrodermal activity (EDA), and 
electroencephalography (EEG)) can be assessed using 
several different approaches. In ECG data, for 
example, the measurements range from simple 
calculation of beats per minutes (bpm) to 
computational complex frequency and special 
geometrical analysis. In addition, since those 
measurements are mathematical transformations of 
electrical signals, they also allow for a multitude of 
parameterizations, e.g., (i) the time window used for 
calculation, (ii) the values used for normalization, or 
(iii) the offset to an event used to detect changes in the 
measurement, resulting in a large amount of possible 
physiological features. Especially in a non-clinical 
environment, such as an auction, where participants 
are not continuously observed for days or weeks but 
hours or even less, it is very challenging to derive 
meaning from existing standard measures [12, 13]. 

In addition to the immense variety of different 
measurements and features, analyzing physiological 
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data is also challenging due to the fact that 
physiological data is usually very noisy (i.e., 
measurement limitations and disturbances) and 
multiple measurements are likely to be correlated 
(e.g., heart rate and respiration). This increases 
computational efforts and requires more fuzzy 
approaches that are able to perform well under such 
restrictions. 

Using an Evolutionary Algorithm (EA), we 
propose a new approach to address the above-
described problem. EAs have been proven to perform 
exceptionally well in situations where (i) there are too 
many possible solutions, (ii) there is no single best 
solution, and (iii) the solutions are heavily constrained 
[14]. Since there is no theory-based answer indicating 
which subsets of physiological measurements and 
measurement parameterizations would provide 
outperforming predictive power, we combine an EA
with two different prediction models: Multiple Linear 
Regression (MLR) and Artificial Neural Network 
(ANN). Both, MLR and ANNs, are commonly used 
prediction models in a broad range of research areas 
for analyzing linear and non-linear relations, 
respectively (see [15]–[17] and references therein). 

2. Dataset

To test and demonstrate our approach, we make 
use of a unique dataset built in previously conducted 
studies by [18], in which the authors investigated a 
phenomenon known as auction fever in the context of 
an ascending clock auction. This auction format is one 
of the most used in today’s retail and professional 
environments. In an ascending clock auction, the 
standing price increases automatically by a fixed time 
interval and participants only have the option to exit 
the auction (without the option of reentering) when the 
current standing price exceeds their personal 
reservation price. Other interactions, either with the 
auction system or with other participants, are not 
available to the participants. The auction ends when 
the second last participant exits it, leaving the last 
participant in the auction as the winner at the current 
standing price. Therefore, measuring auction time and 
auction prices is equivalent in this auction setting. 

In [18], the participants compete for a virtual good 
in every auction. The good’s value (i.e., resale value) 
is described by a commonly known discrete and 
uniform distribution with a predefined range and an 
expected value at one-half of the range’s length. The 
actual value of a good in each auction is randomly 
drawn from the distribution after a winner is
announced and, therefore, is unknown ex ante. A profit 
is only gained by the winning participant, if the 

randomly drawn value is higher than the winning 
price. Otherwise, the participant generates a loss. 

The studies were conducted as a series of
laboratory experiments at Karlsruhe Institute of 
Technology, Germany, in a controlled environment 
(e.g., consistent experimental protocol, controlled 
temperature and humidity levels, and limited 
participant interactions). Student participants were 
recruited to compete in a series of auctions at a time 
and the participants were incentivized using a 
monetary payoff related to their experiment 
performance. Three participants competed in an 
auction, whereby a random stranger (re-)matching 
approach was applied after each completed auction.
Using this random stranger matching approach 
ensures that the groups of participants change between 
every auction and, therefore, participants cannot adapt 
to the strategy of a specific competitor. This reduces 
participant-specific learning effects and increases 
inter-auction independency. The participants had no 
further knowledge against whom of the other 
participants they were competing. Using a full 
factorial and between-subjects design, the authors 
used two treatment variables (time pressure and social 
competition) to vary the degree of auction fever to 
which the participants were exposed. In the first of the 
two reported studies in [18], the auction environment 
was implemented using zTree [19] and the participants 
competed in 15 adjacent auctions. During these 
auctions, behavioral data (i.e., how long participants 
stay in the auction) as well as physiological data of the 
participants were simultaneously recorded. This 
unique combination of synchronized behavioral and 
physiological data comprises the dataset we use in this 
study (for further information on the dataset see [18]). 

In addition to the behavioral and physiological 
data, the dataset comprises demographic data on the 
participants, such as gender and risk aversion, as well 
as detailed information on the conducted auction. In 
the following, the behavioral and physiological data is
described in more detail. 

2.1. Behavioral data 

The behavioral data is based on the interactions of 
participants during the auctions. Fig. 1 outlines the 
auction timeline including its main events. 

Each auction starts with a rest period of 1 minute 
(in addition to an initial cool down period of 5 minutes 
preceding the first auction), which is used to establish 
the baseline of a participant’s current physiological 
state. This baseline is later used to normalize 
physiological features, in order to reduce 
between-subject variability and, therefore, increase 
generalizability of results. The subsequent auction has 
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five main events: (i) the auction start, (ii) the start of 
the resale value range, (iii) the expected value, (iv) the 
auction exit, and (v) the auction end. Given the design 
of an ascending clock auction, only the first and last 
events (the auction start and auction end) are recorded 
for every participant and every auction. The remaining 
events do not occur for every participant in every 
auction, since they depend on the time of a 
participant’s auction exit. If a participant chooses to 

exit the auction before the resale value range or the 
expected value is reached, then these events cannot be 
recorded. Similarly, if a participant wins an auction, 
no auction exit is recorded, since the participant wins 
the auction by being the last participant in it. The 
auction start event is used as a reference point for all 
later events of an auction, which are measured in 
milliseconds relatively to their current auction start 
(i.e., �� = 0 < �� < �� < ��).

In our analysis, we focus on the prediction of 
participants’ auction exit ��, which provides us with a 
dataset of 677 observations (only data entries, which 
include an auction exit event) from 60 participants of 
one treatment (M=11.28 [SD=3.05] observations per 
participant). If recorded, �� occurs between the auction 
start and auction end (�� < �� < ��).  

Fig. 1 An auction timeline showing the 
Initial Cool Down (ICD) Period, 

Rest Period (RP) and 4 auction events: 
�	=Auction Start, �
= Start Resale Value Range, 

��=Expected Value, and ��=Auction End.

2.2. Physiological data 

The physiological data consists of electrical 
activity measurements of the heart by means of a 3-
lead electrocardiogram. The ECG signal was 
continuously recorded for each participant with a 
sampling frequency of 1 kHz. Before the data was used 
in this study, it was preprocessed to assure signal 
quality as well as proper heartbeat and inter-beat 
interval (IBI) detection. The IBI describes the time (in 
milliseconds) between two adjacent peaks in a 
heartbeat signal and it is the basis for most heart rate-
based physiological features. 

Heart rate, among other physiological features, 
provides a direct and quick insight into a person’s

current physiological as well as emotional state [20].
By reflecting the activities of the ANS, physiological 
features reveal information that usually cannot be 
influenced by conscious control and is outside of 
conscious awareness [21]. The ANS is responsible for 
balancing the so-called “fight or flight” reflex on the 
one hand (sympathetic nervous system), and digestion 
and recreation on the other hand (parasympathetic 
nervous system). In recent years, this circumstance has 
successfully inspired the use of physiological features 
in other, non-clinical research areas, such as IS
research (NeuroIS) [21, 22]. 

Heart rate in particular has been shown to 
accurately reflect the arousal dimension of a  person’s
current emotional state [24]–[26]. It increases in 
stressful situations and can influence (economic) 
decision-making [18]. 

After identifying commonly used heart rate-based 
physiological features and normalization methods 
from the literature [27], we implemented those 
physiological features using the Matlab HRV tools
[28]. For each participant, 37 physiological features 
have been derived from their IBI data. Table 1 shows 
an overview of the physiological features and 
additional normalizations implemented for this study. 

Feature
Additional
Normalization Description

hrMean RP, ICD, Log Mean heart rate (HR)
ibiMean RP, ICD, Log Mean inter-beat interval (IBI)
hrvX RP Heart rate variability (X ϵ [“Low 

Frequency (LF),” “High 
Frequency (HF),” “Ratio of 
LF/HF”])

pNNX RP Adjacent IBIs smaller than X ϵ
[12, 20, 50]

rmssd RP Root mean squared standard 
deviation of adjacent IBIs

sdX RP Standard deviations of Poincaré
Plot X ϵ [1, 2]

sd1sd2 RP Ratio of sd1/sd2
sdnn RP Standard deviation  of adjacent 

IBIs
renyi
entropyX

- Renyi Entropy based on 
X ϵ [Ruler, Histogram]

fractal
dimension

- Fractal dimension based on IBIs

Normalization: RP=Rest Period; ICD=Initial Cool Down 
Period; Log=Log-Transformed

Table 1 Physiological features. 

In order to calculate the physiological features 
listed in Table 1, an observation window has to be 
defined. This observation window selects the range of 
IBI data to be used for the calculation of a 
physiological feature and it is defined by three 
parameters: (i) window size, (ii) offset, and 
(iii) selection type. The window size defines the 
timespan (i.e., the range), which is used as input for 
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calculating the physiological feature. The offset 
defines the distance of the observation window’s end 
to the event to which it refers (i.e., the auction start 
event). For example, for a given window size, an offset 
of zero selects an observation window, which ends 
exactly at the time of the event, whereas an offset of 
minus 10 milliseconds selects an observation window 
of the same window size, which ends 10 milliseconds 
before the time of the event (analogous using positive 
offsets). Lastly, the selection type of an observation 
window defines on what basis the selections of 
window size and offset are performed. In the case of 
heartbeats, the selection types are either millisecond-
basis (such as the previous example) or heartbeat-basis 
(i.e., number of beats). Table 2 provides an overview 
of the observation window parameters. 

Window Sizes Window Offsets Selection Types
10,000; 15,000;
20,000

[-10,000; 0] 
in 500ms increments

Milliseconds (ms)

10; 15; 20 [-10; 0]
in 1 beat increments

Heartbeats (b)

Table 2 Observation window parameters. 

By combining all physiological features and 
observation window parameters (e.g., hrMean,
window size 15,000ms, and window offset -500ms),
there are a total of 
 = 5772 possible predictors, i.e., 
candidate features (CFs), for our prediction models.  

3. Methods 

The approach is built on two elements: First, an EA
to select a subset of the available CFs and, second, a 
prediction model to evaluate the selected subset. Our 
implementation is realized in Matlab (version 
R2015a), and, where possible, built-in functions are 
used to avoid reimplementation. Fig. 2 illustrates the 
entire approach as a flowchart. 

3.1. Performance metrics 

We use two performance metrics (i.e., fitness 
values) to evaluate the results: Minimization of the 
subset size � (i.e., number of selected CFs) and 
maximization of the prediction model’s predictive 
power (i.e., �� error metric).

As the problem at hand is of high dimensionality 
(i.e., far more CFs than observations), it is statistically 
possible to select a big enough subset of CFs 
(≥ number of observations), which almost perfectly 
explains the given dataset (i.e., overfitting [29, 30]). 
Furthermore, we seek to provide practical solutions 
that are applicable to real-world ISs. Therefore, a
smaller subset size � is always preferable, as it directly 

relates to less computational effort. However, it is not 
possible to determine a priori the minimal (nor 
optimal) subset size � that provides sufficient 
predictive power. 

To measure the predictive power of our prediction 
model, we have chosen the commonly used �� error 
metric. This metric determines the quality of a 
prediction model in relation to the naïve assumption of 
always predicting the observation mean. In addition, 
the metric is independent of the actual type of 
prediction models as it is not model specific. The 
calculation is as follows: 

�� = max(0;  1 − ∑�� − �(�)��

∑(� − ��)� )
where � represents an observation, �(�) is the 
prediction of � for a given model, and �� the mean of �
of the given dataset. Values close to zero indicate poor 
predictive power, while increasing values indicate 
increasing predictive power. 

Since the relation and weighting of the two 
performance metrics (number of selected CFs and the 
model’s predictive power) are also not known a priori, 
the metrics cannot be combined into a single metric 
(e.g., by a ratio or a scalar product). This makes the 
proposed research question a multi-objective 
optimization problem. 

3.2. Evolutionary algorithm (EA)

The EA is applied as a wrapper method [17, 31] for 
selecting subsets of CFs. As outlined above, the 
proposed problem is a multi-objective optimization 
problem, and therefore we use the Non-Dominated 
Sorting Genetic Algorithm II (NSGA-II) [32]. Like all 
EAs, the NSGA-II is a population-based metaheuristic 
for finding solutions in a complex search space. By 
starting with randomly initiated solutions and evolving 
them over time (favoring solutions based on their 
fitness values), EAs are to converge to a globally 
optimal solution. However, the NSGA-II is specially 
designed for multi-objective optimization, aiming to 
minimize multiple performance metrics. To account 
for the contradiction with our performance metric ��
(needs to be maximized), we multiply �� by minus 
one and use negative �� instead. The solutions 
computed do not consist of a single best individual 
(i.e., subset of CFs) but multiple feasible individuals,
i.e., the Pareto front [30, 33]. Individuals qualify to be 
included in the Pareto front are Pareto dominant,
which means that their fitness based on both the 
performance metrics are at least as good as the 
corresponding performance metrics of all other 
individuals, and there is at least one performance 
metric that strictly outperforms the corresponding 
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performance metric of every other individual. In 
addition, the NSGA-II favors solutions that are less 
crowded within the search space, in order to increase 
sparsely used areas (i.e., favor diversity). Recalling the 
initially proposed problem, the NSGA-II is therefore 
an appropriate choice for our approach. For further 
reading on the NSGA-II and EAs in general, see [14,
32]. 

The EA is implemented such that each individual 
(��) represents one subset of CFs (i.e., genotype). The 
subsets are modeled using a binary string approach, 
which means that every subset consists of 
 binary 
values–each representing one CF. If a CF is selected 
to be included in the following computation, it is 
assigned the value one, whereas zero is assigned to 
CFs that are excluded. Given the binary string 
approach, reproduction is performed using a uniform 
crossover operator in combination with a random flip-
bit mutation operator.  

Since one requirement of our approach is the 
applicability to real-world ISs, the limit of CFs for 
valid solutions is arbitrarily set to a maximum of 
���� = 50 CFs per individual ��. The individuals are 
all initialized with 25 randomly selected CFs (����� =
25). Table 3 shows an overview of all settings used to 
parameterize the above-described EA. 

Parameter Value Parameter Value
Population

Size
250 Selection

Type
Tournament

Populations 5 Mutation
Type

Random
Flip (25%)

Crossover
Type

Uniform
(80%)

Migration
Direction

Forward
(1%)

Elitism 5% Migration 
Interval

10

Table 3 Settings used for the NSGA-II. 

3.3. Prediction models 

CFs selected by the EA are used as inputs (i.e., 
predictors or independent variables) for the outcome 
variable, the auction exit (i.e., the dependent variable). 
We apply two different prediction models to determine 
the predictive power of a particular subset of CFs: 
MLR and ANN. 

The MLR model analyzes linear relations between 
the model’s independent variables (i.e., CFs) and the 

outcome variable. Although physiological 
measurements often show a non-linear characteristic, 
using a linear model is still feasible considering our 
CFs. By additionally using, for example, 
log-transformed and normalized physiological 
measures, we reduce the potential impact of non-linear 
characteristics to exhaust the strengths of a MLR 
model. The MLR model is formulated as follows: 

� = � + � !�"#�
$

�
+ &

where � is the dependent variable, � the intercept, � is 
the size of a given subset, !� the '-th model 
coefficient, "#� the '-th CF of the given subset, and &
the model residuals. To estimate the coefficients, the 
standard method of least squares is used.

The nature-inspired ANN is a statistical learning 
method, which uses a weighted graph of inter-
connected neurons to find relations (linear and non-
linear) between its input neurons and a given output.
Although ANNs are often referred to as a “black box”

approach, their outstanding predictive power in the 
realm of time series forecasting and classification 
fostered their use in a wide area of research and 

Fig. 2 A flowchart of the proposed approach.
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real-world ISs, such as in finance, health, ecology, and 
biology [34]. For our ANN model, we implement a 
basic feedforward Multilayer Perceptron, using two 
hidden layers and a default Levenberg-Marquardt 
backpropagation learning algorithm [35]. The number 
of neurons per layer is adjusted depending on the 
current subset size �. That is, the input layer has �
neurons, the first hidden layer has ⌈2 3⁄ ∗ �⌉ neurons,
the second hidden layer ⌈1 3⁄ ∗ �⌉, and the output layer 
consists of a single neuron. 

3.4. Robustness 

To increase the robustness of our analysis, the 
entire dataset is randomly split by participants into 
three distinct segments prior to the analysis [36]. We 
use 90% of the dataset for training and validation, and 
the remaining 10% for testing. The training and 
validation data is then further used to generate a 10-
fold cross validation dataset. This cross validation is 
applied to each iteration and individual, so that the ��
of an individual per iteration is the mean of the 10-fold 
cross validation outcomes. After the EA computation 
is completed, the test dataset is applied to the selected 

individuals. Only those individuals are considered in 
the results, which also yield a �� ≠ 0 using the test 
dataset. 

Moreover, due to the stochastic nature of the EA 
and the high correlation of some CFs (e.g., mean heart 
rate of a given window size and the offset of one beat 
with the offset of two beats), we do not expect the 
result to be a single dominant individual. Given the 
initial random seed, which is relevant for the “random” 

steps of any EA, two individuals could create an equal 
fitness value but consist of different (but mostly 
similar) CFs. To counter this, we run our approach 100
times over both prediction models, each with different 
initial random seeds. We then statistically test all 
individuals for our final solution. 

4. Results and discussion  

Our approach results in 352 and 815 individuals for 
MLR and ANN, respectively. Each individual ��
represents one distinct solution. The large number of 
distinct individuals is a result of the high correlation 
among some CFs, as described above. All presented 
statistical results are tested against a 5% significant 
level. 

4.1. Descriptive results 

First, we inspect the process of the EA’s

improvements over time. Fig. 3 shows the results 
based on the two performance metrics, mean number 
of CFs (upper graph) and mean predictive power 
(lower graph), on a normalized time scale. Inspecting 
the mean number of CFs, we can see that the two 
prediction models have similar progress over time. For 
the mean predictive power metric, however, the ANN 
model outperforms the MLR model. Recall that an 
increasing value of �� (i.e., decrease in negative ��)
indicates improvement. 

Next, we provide an overview of the predictive 
power of all solutions grouped by the number of CFs 
that each solution contains, i.e., the mean over all 
Pareto fronts, including standard deviations. This is 
shown in the upper graphs of Fig. 4. The lower graphs 
in Fig. 4 show the number of solutions with different 
numbers of CFs. These two types of graphs are shown 
in Fig. 4 for the MLR (on the left) as well as the ANN 
(on the right) models. As expected, the most powerful 
predictive capability is achieved by solutions 
containing the most CFs (CFs=20, ��=0.1810). 
However, there is only one such solution. Recall that 
all individuals were initialized with 25 CFs and the 
arbitrary maximum number of CFs was 50–both are 
greater than the number of CFs in any solution. 

Fig. 3 Improvements of EA over time.
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Fig. 4 Mean EA results for the MLR (left) and ANN (right) models.
Upper graph: Mean negative R² with standard deviation (y) by number of CFs (x). 

Lower graph: Number of solutions (y) containing number of CFs (x). 

Fig 5. Occurrences of physiological features in EA solutions.
Bottom bar: selection type ms. Top bar: selection type: b. Left bar: MLR. Right bar: ANN.

Fig 6. Occurrences of window sizes and offsets in EA solutions.
Left figure: Selection Type ms. Right figure: Selection Type b. 

Left columns: MLR. Right columns: ANN.
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Fig. 5 provides a summary of the physiological 
features that appear in the final solutions. The bars in 
Fig. 5 are composed of stacked bars showing the 
selection type ms (lower bar) and beats (upper bar). 
The figure shows that the selection type ms is more 
often selected than beats. Based on a two-tailed 
Mann-Whitney U test, these results are found to be 
significant for the MLR model (ms [M=42.62], beats
[M=20.16], U=442.0, p<.01) as well as the ANN 
model (ms [M=63.54], beats [M=25.83], U=406.0, 
p<.01). In addition, Fig. 5 shows that the most often 
selected physiological features are heart rate and IBI-
based CFs as well as rmssd. Frequency and geometric 
based CFs are rarely selected. 

Fig. 6 provides an overview of the distribution of 
window sizes and offsets. It is shown that positive 
offsets (oP*) are more often selected than negative 
offsets (oN*) (cf. Table 4). This is to be expected 
because a positive offset means that the selected data 
is closer to the auction exit event, which we are 
predicting. However, the analysis also reveals that this
naïve assumption does not hold in the case of selection 
type beats and ANN as well as selection type ms and 
MLR (i.e., p>.05). 

Analyzing the selections of window sizes as shown 
in Fig. 6, the results indicate no significant difference 
for any window size (i.e., comparison of all window 
size tuples result in p>.10). 

Selection
Type Model

Mean
oN* oP* U p

Ms MLR 7.77 18.37 2155.5 .062
ANN 12.07 26.87 2395.0 .002

Beats MLR 11.07 32.73 162.5 .039
ANN 35.73 25.60 79.0 .171

Table 4 Two-tailed Mann-Whitney U test results 
on selection of offsets. 

4.2. Limitations 

Our results show that there are indications of 
preferences on specific CFs over others in order to 
gain predictive power. Of course, it is not possible to 
draw general conclusions based on the presented 
results, as the results are only valid for the given 
dataset and the decision-maker context it represents.
However, the goal of this paper is to present an
approach capable of selecting proper CFs for a given 
context. The CFs selected in our final solutions have 
to be taken with caution. We did not optimize our 
prediction models for the presented context but mostly 
relied on provided standard settings of the model 
implementations. It is possible that by adjusting the 
prediction models or introducing different models, the 
final solutions could further improve. 

In addition, analyzing physiological data is always 
difficult because changes in a participant’s physiology 
might not always be due to the observed event but 
external factors. We took this fact into consideration 
by including the data of 60 participants recorded in a 
controlled laboratory environment to reduce external 
distraction in the best possible way. Also, recent 
studies indicate that the source of a change in 
physiology (e.g., arousal) does not matter to its later 
impact on behavior [37, 38]. 

4.3. Implications and future work 

The approach has been demonstrated to be able to
select physiological features that can predict auction 
behavior. With this, utilizing physiological 
information is a step closer to become more feasible in 
real-world ISs. In combination with today’s ubiquity 
of physiological sensors and existing theoretical 
models (e.g., [39, 40]), the approach can be used to 
enhance (existing) ISs. Such enhancements (e.g., 
neuro-adaptive ISs and biofeedback) can support 
decision-making and potentially mitigate biases in a 
given decision-making context [41]. Although the 
additional information provided by the physiological 
information might appear limited, in a 
decision-making context, such as electronic auctions,
the smallest advantage over one’s competitors can 
make the difference between being first and being out 
of business. For example, in high stake situations, 
advising a trader to avoid taking unnecessary risks can 
prevent excessive monetary losses. 

Certainly, future work is necessary to further this 
research and improve the results presented in this 
study. Using the approach in combination with 
additional CFs (e.g., “arousal meter” [42]), 
physiological measurements (e.g., EDA) and auction 
events (e.g., outcome of preceding auctions) will 
provide promising research opportunities and more 
precise prediction for a given decision-making 
context. Especially for electronic auctions, the 
approach can be used to compare the role of
physiological measurements in different auction 
settings [43, 44], in order to determine bidding 
behavior and modify the underlying user interface or 
auction design accordingly. Even new auction designs 
that incorporate physiological information into the 
auction process itself are possible. This could increase 
excitement, affect bidding behavior, and provide 
additional hedonic value to participants. 

The CFs found to have more predictive power than 
others can also be of interest to researchers of other 
disciplines. Disciplines such as medicine and 
psychology can build on these results and investigate 

403



further relations of the underlying processes driving a 
decision-maker’s behavior.

5. Conclusion  

We have presented a working approach for 
selecting physiological measurements and their 
parameterization in order to create real-world ISs 
(such as decision support systems, neuro-adaptive ISs,
and education support systems), which can profit from 
the hidden information that physiological information 
provides. Especially in a fast pace environment, such 
as an electronic auction, where every small piece of 
information can have tremendous advantages, making 
the most out of one’s own physiological information 
can have a significant impact. 
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